首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地质学   1篇
海洋学   2篇
天文学   2篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
By compiling wide-angle seismic velocity profiles along the 400-km-long Lofoten–Vesterålen continental margin off Norway, and integrating them with an extensive seismic reflection data set and crustal-scale two-dimensional gravity modelling, we outline the crustal margin structure. The structure is illustrated by across-margin regional transects and by contour maps of depth to Moho, thickness of the crystalline crust, and thickness of the 7+ km/s lower crustal body. The data reveal a normal thickness oceanic crust seaward of anomaly 23 and an increase in thickness towards the continent–ocean boundary associated with breakup magmatism. The southern boundary of the Lofoten–Vesterålen margin, the Bivrost Fracture Zone and its landward prolongation, appears as a major across-margin magmatic and structural crustal feature that governed the evolution of the margin. In particular, a steeply dipping and relatively narrow, 10–40-km-wide, Moho-gradient zone exists within a continent–ocean transition, which decreases in width northward along the Lofoten–Vesterålen margin. To the south, the zone continues along the Vøring margin, however it is offset 70–80 km to the northwest along the Bivrost Fracture Zone/Lineament. Here, the Moho-gradient zone corresponds to a distinct, 25-km-wide, zone of rapid landward increase in crustal thickness that defines the transition between the Lofoten platform and the Vøring Basin. The continental crust on the Lofoten–Vesterålen margin reaches a thickness of 26 km and appears to have experienced only moderate extension, contrasting with the greatly extended crust in the Vøring Basin farther south. There are also distinct differences between the Lofoten and Vesterålen margin segments as revealed by changes in structural style and crustal thickness as well as in the extent of elongate potential-field anomalies. These changes may be related to transfer zones. Gravity modelling shows that the prominent belt of shelf-edge gravity anomalies results from a shallow basement structural relief, while the elongate Lofoten Islands belt requires increased lower crustal densities along the entire area of crustal thinning beneath the islands. Furthermore, gravity modelling offers a robust diagnostic tool for the existence of the lower crustal body. From modelling results and previous studies on- and off-shore mid-Norway, we postulate that the development of a core complex in the middle to lower crust in the Lofoten Islands region, which has been exhumed along detachments during large-scale extension, brought high-grade, lower crustal rocks, possibly including accreted decompressional melts, to shallower levels.  相似文献   
2.
A diagnostic geophysical‐based template, supported by modelling, is suggested to be used prior to, or in combination with geological/drilling data, when proposing a marine impact crater. The latter refers to impacts occurring in a marine setting and resulting in structures that are currently partially or totally underwater. The methodology is based on the well‐documented Mjølnir crater in the Barents Sea. The template has been developed in conjunction with the recently proposed and debated impact crater on the Malvinas (Falkland) Plateau in the South Atlantic. Despite their different sizes, their comparison adds to the ambiguous nature of the Malvinas structure and shows that the integrated analysis of seismic and potential field data and modelling is crucial for any interpretation of a marine impact crater without relevant geological information. The proposed workflow template utilizes all available geophysical data and is composed of a series of iterative steps, including a range of alternative nonimpact interpretations that must be discussed and accounted for. Subsequently, further iterative geophysical modelling is required to support and decipher the impact related processes. A more complex impact crater model and additional impact crater features can be resolved by physical property modelling. In all cases, a close spatial correspondence of the defined impact structure with potential field anomalies is a necessity to establish a causal relationship. We suggest that the diagnostic workflow template provides a methodology to be applied to future studies of the Malvinas structure, as well as to proposed marine (and, with minor adaptions, to nonmarine) impact craters in general.  相似文献   
3.
An extensive, reprocessed two‐dimensional (2D) seismic data set was utilized together with available well data to study the Tiddlybanken Basin in the southeastern Norwegian Barents Sea, which is revealed to be an excellent example of base salt rift structures, evaporite accumulations and evolution of salt structures. Late Devonian–early Carboniferous NE‐SW regional extensional stress affected the study area and gave rise to three half‐grabens that are separated by a NW‐SE to NNW‐SSE trending horst and an affiliated interference transfer zone. The arcuate nature of the horst is believed to be the effect of pre‐existing Timanian basement grain, whereas the interference zone formed due to the combined effect of a Timanian (basement) lineament and the geometrical arrangement of the opposing master faults. The interference transfer zone acted as a physical barrier, controlling the facies distribution and sedimentary thickness of three‐layered evaporitic sequences (LES). During the late Triassic, the northwestern part of a salt wall was developed due to passive diapirism and its evolution was influenced by halite lithology between the three‐LES. The central and southeastern parts of the salt wall did not progress beyond the pedestal stage due to lack of halite in the deepest evaporitic sequence. During the Triassic–Jurassic transition, far‐field stresses from the Novaya Zemlya fold‐and‐thrust belt reactivated the pre‐salt Carboniferous rift structures. The reactivation led to the development of the Signalhorn Dome, rejuvenated the northwestern part of the salt wall and affected the sedimentation rates in the southeastern broad basin. The salt wall together with the Signalhorn Dome and the Carboniferous pre‐salt structures were again reactivated during post‐Early Cretaceous, in response to regional compressional stresses. During this main tectonic inversion phase, the northwestern and southeastern parts of the salt wall were rejuvenated; however, salt reactivation was minimized towards the interference transfer zone beneath the centre of the salt wall.  相似文献   
4.
Sea floor spreading anomalies in the Lofoten-Greenland basins reveal an unstable plate boundary characterized by several small-offset transforms for a period of 4 m.y. after opening. North of the Jan Mayen Fracture Zone, integrated analysis of magnetic and seismic data also document a distinct, persistent magnetic anomaly associated with the continent-ocean boundary and a locally, robust anomaly along the inner boundary of the break-up lavas. These results provide improved constraints on early opening plate reconstructions, which include a new anomaly 23-to-opening pole of rotation yielding more northerly relative motion vectors than previously recognized; and a solution of the enigmatic, azimuthal difference between the conjugate Eocene parts of the Greenland-Senja Fracture Zone if the Greenland Ridge is considered a continental sliver. The results confirm high, 2.36–2.40 cm yr–1, early opening spreading rates, and are consistent with the start of sea floor spreading during Chron 24r. The potential field data along the landward prolongations of the Bivrost Fracture Zone suggest that its location is determined by a Mesozoic transfer system which has acted as a first-order, across-margin tectono-magmatic boundary between the regional Jan Mayen and Greenland-Senja Fracture Zone systems, greatly influencing the pre-, syn- and post-breakup margin development.  相似文献   
5.
The Ghana margin displays one of the best-known transform margins. Studies of the margin have provided the framework for a number of conceptual models aimed at understanding transform margin development worldwide. However, the deep structure of the margin is poorly known as knowledge is based only on wide-angle refraction measurements obtained from two separate localities on the margin. Consequently, complexities in the rift–shear margin architecture have been overlooked by current interpretations of margin development. Based on combined analysis of a detailed grid of ∼2710 km multichannel (MCS) lines and potential field data, we provide new insights into the structural architecture and tectonic development of the Ghana margin. In particular, we outline the deep structure of the entire margin using a series of 2D gravity modelled transects constrained by MCS and published wide-angle data. Our study reveals more complex rift–shear margin architecture than previously envisaged. We demonstrate that the main transform boundary representing the continental extension of the Romanche Fracture Zone, is actually composed of two distinct margin segments, i.e., the ENE–WSW trending sheared margin segment of the Cote d’Ivoire-Ghana Ridge and the NE–SW trending rift-influenced sheared margin segment of the Ghana Platform. These segments evolved under varying stress regimes, and during different time intervals. West of the transform margin, divergent rifting during the Early Cretaceous initiated the development of the Deep Ivorian Basin, essentially, as a single major pull-apart structure. However, east of the shear zone, oblique rifting resulted in the development of the Eastern Ghana Slope Basin as a composite of at least two coalescing pull-apart basins displaced along strike-slip faults. Our structural interpretation of the transform boundary geometry shows that the ridge and platform margin segments were each subjected to separate thermal influences from two different migrating spreading centres. Tectonic uplift of the ridge began through transpression during mid-Albian time following a change in relative direction of plate motion from NE–SW to ENE–WSW. However, the ridge uplift was amplified by thermal heating from a previously undocumented spreading centre whose progressive westward migration along the ridge followed closely after the Albian transpressional phase. The structural architecture of the Ghana margin resulted from a combination of factors, notably, pre-existing basement structure, plate boundary geometry, the relative direction of plate motion and thermal heating.  相似文献   
6.
Abstract— Post‐impact crater morphology and structure modifications due to sediment loading are analyzed in detail and exemplified in five well‐preserved impact craters: Mjølnir, Chesapeake Bay, Chicxulub, Montagnais, and Bosumtwi. The analysis demonstrates that the geometry and the structural and stratigraphic relations of post‐impact strata provide information about the amplitude, the spatial distribution, and the mode of post‐impact deformation. Reconstruction of the original morphology and structure for the Mjølnir, Chicxulub, and Bosumtwi craters demonstrates the long‐term subsidence and differential compaction that takes place between the crater and the outside platform region, and laterally within the crater structure. At Mjølnir, the central high developed as a prominent feature during post‐impact burial, the height of the peak ring was enhanced, and the cumulative throw on the rim faults was increased. The original Chicxulub crater exhibited considerably less prominent peak‐ring and inner‐ring/crater‐rim features than the present crater. The original relief of the peak ring was on the order of 420–570 m (currently 535–575 m); the relief on the inner ring/crater rim was 300–450 m (currently ?700 m). The original Bosumtwi crater exhibited a central uplift/high whose structural relief increased during burial (current height 101–110 m, in contrast to the original height of 85–110 m), whereas the surrounding western part of the annular trough was subdued more that the eastern part, exhibiting original depths of 43–68 m (currently 46 m) and 49–55 m (currently 50 m), respectively. Furthermore, a quantitative model for the porosity change caused by the Chesapeake Bay impact was developed utilizing the modeled density distribution. The model shows that, compared with the surrounding platform, the porosity increased immediately after impact up to 8.5% in the collapsed and brecciated crater center (currently +6% due to post‐impact compaction). In contrast, porosity decreased by 2–3% (currently ?3 to ?4.5% due to post‐impact compaction) in the peak‐ring region. The lateral variations in porosity at Chesapeake Bay crater are compatible with similar porosity variations at Mjølnir crater, and are considered to be responsible for the moderate Chesapeake Bay gravity signature (annular low of ?8 mGal instead of ?15 mGal). The analysis shows that the reconstructions and the long‐term alterations due to post‐impact burial are closely related to the impact‐disturbed target‐rock volume and a brecciated region of laterally varying thickness and depth‐varying physical properties. The study further shows that several crater morphological and structural parameters are prone to post‐impact burial modification and are either exaggerated or subdued during post‐impact burial. Preliminary correction factors are established based on the integrated reconstruction and post‐impact deformation analysis. The crater morphological and structural parameters, corrected from post‐impact loading and modification effects, can be used to better constrain cratering scaling law estimates and impact‐related consequences.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号