首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   5篇
测绘学   1篇
大气科学   3篇
地球物理   20篇
地质学   16篇
天文学   8篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有50条查询结果,搜索用时 62 毫秒
1.
We apply a recently proposed algorithm for disaggregating observed precipitation data into predominantly convective and stratiform, and evaluate biases in characteristics of parameterized convective (subgrid) and stratiform (large-scale) precipitation in an ensemble of 11 RCM simulations for recent climate in Central Europe. All RCMs have a resolution of 25 km and are driven by the ERA-40 reanalysis. We focus on mean annual cycle, proportion of convective precipitation, dependence on altitude, and extremes. The results show that characteristics of total precipitation are often better simulated than are those of convective and stratiform precipitation evaluated separately. While annual cycles of convective and stratiform precipitation are reproduced reasonably well in most RCMs, some of them consistently and substantially overestimate or underestimate the proportion of convective precipitation throughout the year. Intensity of convective precipitation is underestimated in all RCMs. Dependence on altitude is also simulated better for stratiform and total precipitation than for convective precipitation, for which several RCMs produce unrealistic slopes. Extremes are underestimated for convective precipitation while they tend to be slightly overestimated for stratiform precipitation, thus resulting in a relatively good reproduction of extremes in total precipitation amounts. The results suggest that the examined ensemble of RCMs suffers from substantial deficiencies in reproducing precipitation processes and support previous findings that climate models’ errors in precipitation characteristics are mainly related to deficiencies in the representation of convection.  相似文献   
2.
This note summarizes results of the first integration of regional numerical weather prediction model ALADIN in a climate mode. The ALADIN model, developed in an international cooperation led by Météo France, is operationally used for weather prediction. The grid step of the model is 12 km; the integration domain covers a major part of Europe. A one-month-long run has been performed with this model on observed boundary conditions (represented by assimilations by the global model ARPEGE). It is demonstrated that no excessive error is generated and accumulated in the model during the integration; hence the model is integrable for extended time periods and may serve a basis for a development towards a regional climate model.  相似文献   
3.
Moldavites are tektites genetically related to the Ries impact structure, located in Central Europe, but the source materials and the processes related to the chemical fractionation of moldavites are not fully constrained. To further understand moldavite genesis, the Cu and Zn abundances and isotope compositions were measured in a suite of tektites from four different substrewn fields (South Bohemia, Moravia, Cheb Basin, Lusatia) and chemically diverse sediments from the surroundings of the Ries impact structure. Moldavites are slightly depleted in Zn (~10–20%) and distinctly depleted in Cu (>90%) relative to supposed sedimentary precursors. Moreover, the moldavites show a wide range in δ66Zn values between 1.7 and 3.7‰ (relative to JMC 3‐0749 Lyon) and δ65Cu values between 1.6 and 12.5‰ (relative to NIST SRM 976) and are thus enriched in heavy isotopes relative to their possible parent sedimentary sources (δ66Zn = ?0.07 to +0.64‰; δ65Cu = ?0.4 to +0.7‰). In particular, the Cheb Basin moldavites show some of the highest δ65Cu values (up to 12.5‰) ever observed in natural samples. The relative magnitude of isotope fractionation for Cu and Zn seen here is opposite to oxygen‐poor environments such as the Moon where Zn is significantly more isotopically fractionated than Cu. One possibility is that monovalent Cu diffuses faster than divalent Zn in the reduced melt and diffusion will not affect the extent of Zn isotope fractionation. These observations imply that the capability of forming a redox environment may aid in volatilizing some elements, accompanied by isotope fractionation, during the impact process. The greater extent of elemental depletion, coupled with isotope fractionation of more refractory Cu relative to Zn, may also hinge on the presence of carbonyl species of transition metals and electromagnetic charge, which could exist in the impact‐induced high‐velocity jet of vapor and melts.  相似文献   
4.
Investigations on a set of experimental models of highly viscous intrusions were carried out in order to study the internal strain pattern during vertical ascent and emplacement of granite intrusions. The strain pattern was determined by means of anisotropy of magnetic susceptibility (AMS) resulting from the orientation of magnetite particles in a liquid plaster medium. The modelled intrusions show distinct fabrics reflecting the flow of a rheologically complex, non-Newtonian material. During the vertical growth of the intrusion, constrictional vertical fabrics are transposed into flattening fabrics, and along with the development of low-intensity fabric domains are passively transported upwards. Vertical growth takes place along subvertical thrust shear zones that satisfactorily explain the discordant magmatic fabrics in granites along intrusion sides. The resulting complex fabric patterns suggest that the vertical movement of material in ascending intrusions is accommodated by various flow mechanisms operating simultaneously.  相似文献   
5.
Positions of 17 filaments found inside the Perseid meteoroid stream by method of indices are compared with those of low-order mean-motion resonances with Jupiter and Saturn. By this comparing, the Jupiter and Saturn branches of the Perseid stream were identified. The existence of gaps in the distribution of the semi-major axes of the Perseids is confirmed using the more numerous material of a new version of the IAU Meteor Data Center Catalogue. Our integrations of the motion of particles in the Perseid stream lead to an extraordinary important fact. The found filaments are located in close proximity of strong resonances. They represent, with a high probability, increased numbers of particles gravitationally expelled from a resonant gap and (temporary) settled down in its close proximity.  相似文献   
6.
The present study describes a new method for statistical-dynamical downscaling that combines two different approaches, namely, a set of patterns simulated with a numerical flow model and a transformation function used to process both calculated data and measurements at a reference station. The combined method produces wind roses and wind speed histograms at an arbitrary location in the model domain. The inflow wind direction represented the key parameter to define a set of wind field simulations. The other two inflow parameters, namely, thermal stratification and geostrophic wind speed, were derived from corresponding averaged soundings. The results showed that in the Czech Republic, there are areas where wind roses are deformed by the surrounding terrain. The deformations occur in relatively shallow and wide valleys, and they are more sensitive to the inflow wind direction. Calculated wind roses are compared to corresponding observations at 22 synoptic stations. The most frequent wind direction sector in simulations agreed with measurements at 17 stations. The resulting error in frequency in that sector was under 5 % at 10 stations. In general, the main features of the wind roses are modelled well, even at a relatively large distance from the reference station. However, better performance was achieved for smaller distances between reference station and the site. In further studies, a more extensive set of flow patterns with reduced intervals of thermal stratification and wind speed will likely improve calculated wind roses.  相似文献   
7.
8.
Retrieving the parameters of a seismic source from seismograms involves deconvolving the response of the medium from seismic records. Thus, in general, source parameters are determined from both seismograms and the Green functions describing the properties of the medium in which the earthquake focus is buried. The quality of each of these two datasets is equally significant for the successful determination of source characteristics. As a rule, both sets are subject to contamination by effects that decrease the resolution of the source parameters. Seismic records are generally contaminated by noise that appears as a spurious signal unrelated to the source. Since an improper model of the medium is quite often employed, due to poor knowledge of the seismic velocity of the area under study, and since the hypocentre may be mislocated, the Green functions are not without fault. Thus, structures not modelled by Green functions are assigned to the source, distorting the source mechanism. To demonstrate these effects, we performed a synthetic case study by simulating seismic observations in the Dobrá Voda area of the Little Carpathians region of Slovakia. Simplified 1-D and 3-D laterally inhomogeneous structural models were constructed, and synthetic data were calculated using the 3-D model. Both models were employed during a moment tensor inversion. The synthetic data were contaminated by random noise up to 10 and 20 % of the maximum signal amplitude. We compared the influence of these two effects on retrieving moment tensors, and determined that a poor structural model can be compensated for by high-quality data; and that, in a similar manner, a lack of data can be compensated for by a detailed model of the medium. For examples, five local events from the Dobrá Voda area were processed.  相似文献   
9.
In the Dem?novská dolina Cave system (Slovakia) and its vicinity, 32 sampling places for regular observation (in 2-months interval) of δ18O and δ2H in water were established. This monitoring included precipitation waters, waters in the surface streams, waters of the underground hydrological system as well as the dripping seepage waters of the cave system. Altitudinal extent of the area was from 800 m a.s.l. (lowermost cave entrance) to 2024 m a.s.l. (Chopok Mt. on the top of the crystalline range). Initial results show some similarities but also differences within the analyzed water types. For precipitation, a high variability of isotopic composition was confirmed, from quite depleted up to more enriched waters (δ18O from -16.8‰ up to -5.7‰; δ2H from -121.6‰ to -32.7‰). During the recharge process and groundwater/surface water formation, precipitation water is homogenized, what is reflected in much more stable isotope content. The most depleted (δ18O ≈ -11.7‰ to -10.8‰; δ2H ≈ -78.9‰ to -73.4‰) were the waters of surface streams, running from the northern slopes of the Nízke Tatry Mts., formed by crystalline rocks, alochtonous to the under?ground hydrological system. Smaller autochtonous surface water streams (formed in the side valleys of the main karstic canyon) are slightly enriched (heavier, as δ18O ≈ -11.4‰ to -10.6‰; δ2H ≈ -78.3‰ to -71.5‰), what reflects lower altitudes of their watersheds. Interesting is the distribution of the isotope content of the underground streams in the cave system. The most depleted are the underground streams directly (visibly) communicating with surface waters (δ18O≈-11.33±0.13‰; δ2H≈-76.88±1.68‰). Extent of the relationship of underground streams to the autochtonous seepage waters (slow circulation through the fissures) is manifested by respective portion of iso?topically enriched waters–as the underground streams show different isotope composition. The combination of the alochtonous water components (from surface streams reaching the karstic area from the adjacent crystalline via swallow holes) and autochtonous water components (recharged directly in karstified limestones) is visible especially on the subsurface stream of Dem?novka. The most isotopically enriched (heaviest) of all water types are dripping seepage waters (δ18O ≈ -10.4‰ to -9.4‰; δ2H ≈ -71.6‰ to -65.0‰).  相似文献   
10.
The hydrothermal alteration of granites has large influence on their petrophysical properties. To reveal the impact of alteration on magnetic and porosity properties of granites we have conducted a complex study of effects of two largely independent alteration processes, related to chemically different fluids, in granites of the Vysoký Kámen stock (the Krudum granite body, Czech Republic). It includes the whole-rock geochemical, magnetic and pore-space characterization. The alkali feldspathization resulted in decomposition of Li-mica, quartz removal, depletion in mafic cations and growth of new alkali feldspars (albite, K-feldspar), decreasing the overall magnetic susceptibility and disrupting the pore space by its discontinuation. The preservation of the orientation of the principal susceptibility axes is likely related to insignificant influence of the feldspathization process on the paramagnetic and diamagnetic phases orientation acquired during the magma emplacement. The greisenization, on the other hand had considerably more significant effects on microstructure and physical properties of the granite. The microstructure was modified by the growth of large amounts of new phases (Li-mica, quartz and topaz). This changed the mineral density of the rock, the porosity, size and character of pores to larger, flatter and probably more connected. This led also to the complete reworking of the original anisotropy of magnetic susceptibility during the greisenization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号