首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   2篇
  2022年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.

The high-K calc-alkaline granitoids in the northern part of the Mandara Hills are part of the well-exposed post-collisional plutons in northeastern Nigeria. The calc-alkaline rock association consists of quartz monzodiorite, hornblende biotite granite, biotite granites and aplite which intruded the older basement consisting mainly of low-lying migmatitic gneisses and amphibolites during the Neoproterozoic Pan-African Orogeny. Petrological and geochemical studies have revealed the presence of hornblende, iron oxide, and metaluminous to slightly peraluminous characteristics in the granitoids which is typical of I-type granite. The granitoids are also depleted in some high field strength elements (e.g. Nb and Ta) as well as Ti. Plots of Mg# versus SiO2 indicate that the granite was derived from partial melting of crustal sources. Lithospheric delamination at the waning stage of the Pan-African Orogeny possibly triggered upwelling of hot mafic magma from the mantle which underplated the lower crust. This, in turn, caused partial melting and magma generation at the lower to middle-crustal level. However, the peculiar geochemical characteristics of the quartz monzodiorite especially the enrichment in compatible elements such as MgO, Cr, and Ni, as well as LILE element (e.g. K, Ce, Cs, Ba, and Sr), signify that the rock formed from an enriched upper mantle source. The emplacement of high-K granites in the Madara Hill, therefore, marked an important episode of crustal reworking during the Neoproterozoic. However, further isotopic work is needed to confirm this model.

  相似文献   
2.
This study reports a new dataset of whole-rock geochemistry, biotite chemistry, in situ zircon UPb geochronology and Hf isotope for a suite of granite and associated pegmatite samples from the Gubrunde region in the Eastern Nigeria Terrane (ENT), Nigeria. The Gubrunde granitic rocks are weakly ferroan, peraluminous and calc-alkalic to alkali-calcic in composition, and show I-type affinity. The zircon UPb geochronology gives an age of ~580 Ma for the rocks, although the presence of inherited zircons with early Pan-African ages of 696 ± 12, 647 ± 7 and 624–613 Ma are evident indicative of a complex history of their source rocks. The Gubrunde granite and the pegmatite yielded similar average Hf crustal model age TDM2 of 1.9 ± 0.1 Ga and εHf(t) values ?6.2 ± 1.2, suggesting that they may have sourced from reworked old crustal rocks with minor contributions from the mantle. The granite and the pegmatite were likely to connect by fractional crystallization under low to moderate pressure (~2.2 to 3.0 kbar) and temperature (~717 °C), and low oxygen fugacity (<ΔNNO ?1.14). The ca. 580 Ma magmatism may have been triggered by delamination of the lithospheric mantle as a consequence of crustal thinning during waning stage of the Pan-African orogeny.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号