首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   4篇
地球物理   1篇
地质学   2篇
  2020年   1篇
  2016年   1篇
  2011年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有7条查询结果,搜索用时 218 毫秒
1
1.
The International Commission for the Hydrology of the Rhine basin (CHR) hascarried out a researchproject to assess the impact of climate change on the river flow conditionsin the Rhine basin. Along abottom-up line, different detailed hydrological models with hourly and dailytime steps have beendeveloped for representative sub-catchments of the Rhine basin. Along atop-down line, a water balancemodel for the entire Rhine basin has been developed, which calculates monthlydischarges and which wastested on the scale of the major tributaries of the Rhine. Using this set ofmodels, the effects of climatechange on the discharge regime in different parts of the Rhine basin werecalculated using the results ofUKHI and XCCC GCM-experiments. All models indicate the same trends in thechanges: higher winterdischarge as a result of intensified snow-melt and increased winterprecipitation, and lower summerdischarge due to the reduced winter snow storage and an increase ofevapotranspiration. When the resultsare considered in more detail, however, several differences show up. These canfirstly be attributed todifferent physical characteristics of the studied areas, but different spatialand temporal scales used in themodelling and different representations of several hydrological processes(e.g., evapotranspiration,snow melt) are responsible for the differences found as well. Climate changecan affect various socio-economicsectors. Higher temperatures may threaten winter tourism in the lower wintersport areas. The hydrologicalchanges will increase flood risk during winter, whilst low flows during summerwill adversely affectinland navigation, and reduce water availability for agriculture and industry.Balancing the required actionsagainst economic cost and the existing uncertainties in the climate changescenarios, a policy of `no-regretand flexibility' in water management planning and design is recommended, whereanticipatory adaptivemeasures in response to climate change impacts are undertaken in combinationwith ongoing activities.  相似文献   
2.
Changes in climatic conditions may have great impact on the distribution of available water in space and time. However the results of models that describe future climate conditions are still insufficient to be used in regional hydrological simulation studies. This article describes a first tentative estimation of the sensitivity of discharge of the river Rhine to two environmental changes. Firstly, to a change in snow covered area due to a rise of 4°C in winter temperature in the upland part (Alps) of the drainage area and, secondly, to a large land use change in the lowland area (Federal Republic of Germany/France). ‘Worst case’ scenarios for discharge of the river Rhine under warmer conditions give a reduction of 10 percent for the summer discharge at Rees (Dutch/German border). The results of the estimations indicate that the reduction of the summer discharge in a warmer world could be larger.  相似文献   
3.
The impact of climate change on the river rhine: A scenario study   总被引:3,自引:0,他引:3  
This paper concerns the impact of human-induced global climate change on the River Rhine discharge. For this purpose a model for climate assessment, named ESCAPE, is coupled to a water balance model, named RHINEFLOW. From climate scenarios, changes in regional annual water availability and seasonal discharge in the River Rhine Basin are estimated. The climate scenarios are based on greenhouse gases emissions scenarios. An assessment is made for best guess seasonal discharge changes and for changes in frequencies of low and high discharges in the downstream reaches of the river. In addition, a quantitative estimation of the uncertainties associated with this guess is arrived at.The results show that the extent and range of uncertainty is large with respect to the best guess changes. The uncertainty range is 2–3 times larger for the Business-as-Usual than for the Accelerated Policies scenarios. This large range stems from the doubtful precipitation simulations from the present General Circulation Models. This scenario study showed the precipitation scenarios to be the key-elements within the present range of reliable climate change scenarios.For the River Rhine best guess changes for annual water availability are small according to both scenarios. The river changes from a present combined snow-melt-rain fed river to an almost entirely rain fed river. The difference between present-day large average discharge in winter and the small average discharge in autumn should increase for all scenarios. This trend is largest in the Alpine part of the basin. Here, winter discharges should increase even for scenarios forecasting annual precipitation decreases. Summer discharge should decrease. Best guess scenarios should lead to increased frequencies of both low and high flow events in the downstream (Dutch) part of the river. The results indicate changes could be larger than presently assumed in worst case scenarios used by the Dutch water management authorities.  相似文献   
4.
RHINEFLOW is a GIS based water balance model that has been developed to study the changes in the water balance compartments of the river Rhine basin on a monthly time basis. The model has been designed to study the sensitivity of the Rhine discharge to a climate change. The calculated discharge has been calibrated and validated on the period 1956 to 1980. For this period the model efficiency of RHINEFLOW is between 0.74 and 0.81 both for the entire Rhine and for its tributaries. Also calculated values for variations in other compartments, e.g. snow storage and actual evapotranspiration, were in good agreement with the measured values.Since a high correlation between monthly discharge and peak discharge was found for the period 1900–1980 The RHINEFLOW model is used to assess the probability of exceedence for discharge peaks under possible future climate conditions.The probabilities of exceedence were calculated from the conditional probabilities of peak discharges for a series of 15 classes of monthly discharges. Comparison of a calculated frequency distribution of high discharge peaks with observed peaks in a test series showed that the method performs well.Scenarios for temperature changes between 0 °C and plus 4 °C and precipitation changes between plus 20% and minus 20% have been applied. Within this range flood frequencies are more sensitive for a precipitation change than for a temperature change. The present two-year return period peak flow (6500–7000 m3/s) decreases by about 6% due to a temperature rise of 4 °C; a precipitation decrease of 20% leads to 30% lower two-year peaks whilst 20% precipitation increase raises them by approximately 30%.Application of a Business As Usual (BAU) and an Accelerated Policy (AP) climate scenario resulted in a significant increase in probability of peak flows for the BAU scenario, while for the AP scenario no significant change could be found. Due to sampling errors, accurate estimations of recurrence times of discharge peaks7000 m3/s require a longer sampling time series than 90 years. For management purposes the method can be applied to estimate changes of probabilities of events with a relatively long recurrence time.  相似文献   
5.
Sea level rise, especially combined with possible changes in storm surges and increased river discharge resulting from climate change, poses a major threat in low-lying river deltas. In this study we focus on a specific example of such a delta: the Netherlands. To evaluate whether the country’s flood protection strategy is capable of coping with future climate conditions, an assessment of low-probability/high-impact scenarios is conducted, focusing mainly on sea level rise. We develop a plausible high-end scenario of 0.55 to 1.15 m global mean sea level rise, and 0.40 to 1.05 m rise on the coast of the Netherlands by 2100 (excluding land subsidence), and more than three times these local values by 2200. Together with projections for changes in storm surge height and peak river discharge, these scenarios depict a complex, enhanced flood risk for the Dutch delta.  相似文献   
6.
The Editors-in-Chief of Environmental Earth Sciences are issuing an editorial expression of concern to alert readers that this article.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号