首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
海洋学   2篇
  2019年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Gaofen-3(GF-3), a Chinese civil synthetic aperture radar(SAR) at C-band, has operated since August 2016.Remarkably, several typhoons have been captured by GF-3 around the China Seas over its last two-year mission.In this study, six images acquired in Global Observation(GLO) and Wide ScanSAR(WSC) modes at verticalvertical(VV) polarization channel are discussed. This work focuses on investigating the observation of rainfall using GF-3 SAR. These images were collocated with winds from the European Centre for Medium-Range Weather Forecasts(ECMWF), significant wave height simulated from the WAVEWATCH-III(WW3) model, sea surface currents from climate forecast system version 2(CFSv2) of the National Centers for Environmental Prediction(NCEP) and rain rate data from the Tropical Rainfall Measuring Mission(TRMM) satellite. Sea surface roughness,was compared with the normalized radar cross section(NRCS) from SAR observations, and indicated a 0.8 correlation(COR). We analyzed the dependences of the difference between model-simulated NRCS and SARmeasured NRCS on the TRMM rain rate and WW3-simulated significant wave height. It was found that the effects of rain on SAR damps the radar signal at incidence angles ranging from 15° to 30°, while it enhances the radar signal at incidence angles ranging from 30° to 45° and incidence angles smaller than 10°. This behavior is consistent with previous studies and an algorithm for rain rate retrieval is anticipated for GF-3 SAR.  相似文献   
2.
Theoretical-based ocean wave retrieval algorithms are applied by inverting a synthetic aperture radar(SAR)intensity spectrum into a wave spectrum, that has been developed based on a SAR wave mapping mechanism. In our previous studies, it was shown that the wave retrieval algorithm, named the parameterized first-guess spectrum method(PFSM), works for C-band and X-band SAR at low to moderate sea states. In this work, we investigate the performance of the PFSM algorithm when it is applied for dual-polarization c-band sentinel-1(S-1) SAR acquired in extra wide-swath(EW) and interferometric wide-swath(IW) mode under cyclonic conditions.Strong winds are retrieved from six vertical-horizontal(VH) polarization S-1 SAR images using the c-band crosspolarization coupled-parameters ocean(C-3 PO) model and then wave parameters are obtained from the image at the vertical-vertical(VV) polarization channel. significant wave height(SWH) and mean wave period(MWP) are compared with simulations from the WAVEWATCH-III(WW3) model. The validation shows a 0.69 m root mean square error(RMSE) of SWH with a –0.01 m bias and a 0.62 s RMSE of MWP with a –0.17 s bias. Although the PFSM algorithm relies on a good quality SAR spectrum, this study confirms the applicability for wave retrieval from an S-1 SAR image. Moreover, it is found that the retrieved results have less accuracy on the right sector of cyclone eyes where swell directly affects strong wind-sea, while the PFSM algorithm works well on the left and rear sectors of cyclone eyes where the interaction of wind-sea and swell is relatively poor.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号