首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
大气科学   1篇
地质学   1篇
海洋学   8篇
天文学   14篇
  2020年   1篇
  2012年   2篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2001年   1篇
排序方式: 共有24条查询结果,搜索用时 343 毫秒
1.
The first large-scale international intercomparison of analytical methods for the determination of dissolved iron in seawater was carried out between October 2000 and December 2002. The exercise was conducted as a rigorously “blind” comparison of 7 analytical techniques by 24 international laboratories. The comparison was based on a large volume (700 L), filtered surface seawater sample collected from the South Atlantic Ocean (the “IRONAGES” sample), which was acidified, mixed and bottled at sea. Two 1-L sample bottles were sent to each participant. Integrity and blindness were achieved by having the experiment designed and carried out by a small team, and overseen by an independent data manager. Storage, homogeneity and time-series stability experiments conducted over 2.5 years showed that inter-bottle variability of the IRONAGES sample was good (< 7%), although there was a decrease in iron concentration in the bottles over time (0.8–0.5 nM) before a stable value was observed. This raises questions over the suitability of sample acidification and storage.  相似文献   
2.
A multidisciplinary study in the Gulf of Cadiz is revisited, using additional diagnostic modelling tools. The dissolved trace metal (Cu, Ni, Zn, Co) distributions in the Gulf of Cadiz are analysed using modelled tracer evolutions, field observations and the concept of tracer ages. This study shows that a significant part of the observed metal distributions can be explained by the metal inputs of three river systems (Guadiana, Rio Tinto and Odiel, Guadalquivir) discharging into the Gulf of Cadiz, while the remainder of the signal is most likely associated with the benthic metal remobilisation along the shelf of this coastal region.  相似文献   
3.
This paper reports on the results from an extensive study of all nadir-looking spectra acquired by Cassini/CIRS during the 44 flybys performed in the course of the nominal mission (2004-2008). With respect to the previous study (Coustenis, A., and 24 colleagues [2007]. Icarus 189, 35-62, on flybys TB-T10) we present here a significantly richer dataset with, in particular, more data at high northern and southern latitudes so that the abundances inferred here at these regions are more reliable. Our enhanced high-resolution dataset allows us to infer more precisely the chemical composition of Titan all over the disk. We also include improved spectroscopic data for some molecules and updated temperature profiles. The latitudinal distributions of all of the gaseous species are inferred. We furthermore test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current General Circulation Models for Titan and compare our results on all the gaseous abundances with predictions from 1-D photochemical-radiative models to check the reliability of the chemical reactions and pathways.  相似文献   
4.
The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes. We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on the other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.  相似文献   
5.
The zonal mean ammonia abundance on Jupiter between the 400- and 500-mbar pressure levels is inferred as a function of latitude from Cassini Composite Infrared Spectrometer data. Near the Great Red Spot, the ammonia abundance is mapped as a function of latitude and longitude. The Equatorial Zone is rich in ammonia, with a relative humidity near unity. The North and South Equatorial Belts are depleted relative to the Equatorial Zone by an order of magnitude. The Great Red Spot shows a local maximum in the ammonia abundance. Ammonia abundance is highly correlated with temperature perturbations at the same altitude. Under the assumption that anomalies in ammonia and temperature are both perturbed from equilibrium by vertical motion, we find that the adjustment time constant for ammonia equilibration is about one third of the radiative time constant.  相似文献   
6.
Nitrogen loadings to coastal waters have increased over the last century, resulting in deterioration in water quality. In this study we investigated the distributions and seasonality of dissolved organic nitrogen (DON), and its relationship to total dissolved nitrogen (TDN), for two anthropogenically influenced estuarine systems in southwest England. Concentrations of DON in both estuaries were generally < 80 μM. DON showed non-conservative distributions, resulting from external and internal inputs and in situ reactivity. DON contributed 38 ± 22% (range 4–79%, Yealm) and 36 ± 17% (range 4–84%, Plym) to the TDN pool, with lower values generally observed in the fresher samples relative to the more saline samples. DON was a larger fraction of the TDN pool during the summer and autumn relative to winter and spring, indicating the influence of bacterioplankton release on nitrogen cycling in the estuaries. Ammonification and nitrification were observed in the estuaries, processes which were reproduced in incubation experiments using bioreactors. The bioreactor experiments showed that 12% h− 1 of the DON flux from the River Plym may be available to bacteria, indicating significant removal of DON during the residence time of the water in the estuary (a few days). The bioavailable nature of the DON means that this N fraction significantly adds to the eutrophication burden of the receiving coastal waters, and therefore cannot be ignored in environmental assessments.  相似文献   
7.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   
8.
We use five and one-half years of limb- and nadir-viewing temperature mapping observations by the Composite Infrared Radiometer-Spectrometer (CIRS) on the Cassini Saturn orbiter, taken between July 2004 and December 2009 (LS from 293° to 4°; northern mid-winter to just after northern spring equinox), to monitor temperature changes in the upper stratosphere and lower mesosphere of Titan. The largest changes are in the northern (winter) polar stratopause, which has declined in temperature by over 20 K between 2005 and 2009. Throughout the rest of the mid to upper stratosphere and lower mesosphere, temperature changes are less than 5 K. In the southern hemisphere, temperatures in the middle stratosphere near 1 mbar increased by 1-2 K from 2004 through early 2007, then declined by 2-4 K throughout 2008 and 2009, with the changes being larger at more polar latitudes. Middle stratospheric temperatures at mid-northern latitudes show a small 1-2 K increase from 2005 through 2009. At north polar latitudes within the polar vortex, temperatures in the middle stratosphere show a ∼4 K increase during 2007, followed by a comparable decrease in temperatures in 2008 and into early 2009. The observed temperature changes in the north polar region are consistent with a weakening of the subsidence within the descending branch of the middle atmosphere meridional circulation.  相似文献   
9.
Maps of isotherms on surfaces of constant pressure in Titan's middle atmosphere encircle the poles but show an offset, implying that the mean zonal flow has an axis of symmetry that is tilted relative to the spin axis of the solid body. The effect is seen in both hemispheres around a consistent axis. Periodogram analysis of the temperature field shows that wavenumber one, the signal corresponding to the spin tilt, is the strongest wave component. We conjecture that the tilt of the atmospheric spin is due to a feedback between the flow and the solar heating. The spin adjusts itself to align the spin equator with the direction toward the Sun, and thereby maximizes the efficiency with which the meridional circulation pumps angular momentum upward to generate superrotation.  相似文献   
10.
Particle acceleration by ultrarelativistic shocks: theory and simulations   总被引:1,自引:0,他引:1  
We consider the acceleration of charged particles near ultrarelativistic shocks, with Lorentz factor     . We present simulations of the acceleration process and compare these with results from semi-analytical calculations. We show that the spectrum that results from acceleration near ultrarelativistic shocks is a power law,     , with a nearly universal value     for the slope of this power law.
We confirm that the ultrarelativistic equivalent of the Fermi acceleration at a shock differs from its non-relativistic counterpart by the occurrence of large anisotropies in the distribution of the accelerated particles near the shock. In the rest frame of the upstream fluid, particles can only outrun the shock when their direction of motion lies within a small loss cone of opening angle     around the shock normal.
We also show that all physically plausible deflection or scattering mechanisms can change the upstream flight direction of relativistic particles originating from downstream by only a small amount:     . This limits the energy change per shock crossing cycle to     , except for the first cycle where particles originate upstream. In that case the upstream energy is boosted by a factor     for those particles that are scattered back across the shock into the upstream region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号