首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   16篇
  国内免费   9篇
测绘学   2篇
大气科学   15篇
地球物理   116篇
地质学   164篇
海洋学   121篇
天文学   79篇
综合类   5篇
自然地理   21篇
  2023年   4篇
  2021年   9篇
  2020年   6篇
  2019年   25篇
  2018年   9篇
  2017年   9篇
  2016年   14篇
  2015年   3篇
  2014年   23篇
  2013年   21篇
  2012年   12篇
  2011年   15篇
  2010年   20篇
  2009年   24篇
  2008年   24篇
  2007年   31篇
  2006年   26篇
  2005年   29篇
  2004年   10篇
  2003年   15篇
  2002年   7篇
  2001年   13篇
  2000年   9篇
  1999年   17篇
  1998年   12篇
  1997年   7篇
  1996年   8篇
  1995年   6篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   8篇
  1984年   6篇
  1983年   9篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   9篇
  1977年   4篇
  1976年   2篇
  1974年   3篇
  1972年   2篇
  1970年   2篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
1.
The present paper reports, for the first time, the occurrence of an omphacite‐bearing mafic schist from the Asemi‐gawa region of the Sanbagawa belt (southwest Japan). The mafic schist occurs as thin layers within pelitic schist of the albite–biotite zone. Omphacite in the mafic schist only occurs as inclusions in garnet, and albite is the major Na phase in the matrix, suggesting that the mafic schist represents highly retrogressed eclogite. Garnet grains in the sample show prograde‐type compositional zoning with no textural or compositional break, and contain mineral inclusions of omphacite, quartz, glaucophane, barroisite/hornblende, epidote and titanite. In addition to the petrographic observations, Raman spectroscopy and focused ion beam system–transmission electron microscope analyses were used for identification of omphacite in the sample. The omphacite in the sample shows a strong Raman peak at 678 cm?1, and concomitant Raman peaks are all consistent with those of the reference omphacite Raman spectrum. The selected area electron diffraction pattern of the omphacite is compatible with the common P2/n omphacite structure. Quartz inclusions in the mafic schist preserve high residual pressure values of Δω1 > 8.5 cm?1, corresponding to the eclogite facies conditions. The combination of Raman geothermobarometries and garnet–clinopyroxene geothermometry gives peak pressure–temperature (PT) conditions of 1.7–2.0 GPa and 440–540 °C for the mafic schist. The peak P–T values are comparable to those of the schistose eclogitic rocks in other Sanbagawa eclogite units of Shikoku. These findings along with previous age constraints suggest that most of the Sanbagawa schistose eclogites and associated metasedimentary rocks share similar simple P–T histories along the Late Cretaceous subduction zone.  相似文献   
2.
Cathodoluminescence (CL) analyses were carried out on maskelynite and lingunite in L6 chondrites of Tenham and Yamato-790729. Under CL microscopy, bright blue emission was observed in Na-lingunite in the shock veins. Dull blue-emitting maskelynite is adjacent to the shock veins, and aqua blue luminescent plagioclase lies farther away. CL spectroscopy of the Na-lingunite showed emission bands centered at ~330, 360–380, and ~590 nm. CL spectra of maskelynite consisted of emission bands at ~330 and ~380 nm. Only an emission band at 420 nm was recognized in crystalline plagioclase. Deconvolution of CL spectra from maskelynite successfully separated the UV–blue emission bands into Gaussian components at 3.88, 3.26, and 2.95 eV. For comparison, we prepared K-lingunite and experimentally shock-recovered feldspars at the known shock pressures of 11.1–41.2 GPa to measure CL spectra. Synthetic K-lingunite has similar UV–blue and characteristic yellow bands at ~550, ~660, ~720, ~750, and ~770 nm. The UV–blue emissions of shock-recovered feldspars and the diaplectic feldspar glasses show a good correlation between intensity and shock pressure after deconvolution. They may be assigned to pressure-induced defects in Si and Al octahedra and tetrahedra. The components at 3.88 and 3.26 eV were detectable in the lingunite, both of which may be caused by the defects in Si and Al octahedra, the same as maskelynite. CL of maskelynite and lingunite may be applicable to estimate shock pressure for feldspar-bearing meteorites, impactites, and samples returned by spacecraft mission, although we need to develop more as a reliable shock barometer.  相似文献   
3.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
4.
We performed shock recovery experiments on an olivine‐phyric basalt at shock pressures of 22.2–48.5 GPa to compare with shock features in Martian meteorites (RBT 04261 and NWA 1950). Highly shocked olivine in the recovered basalt at 39.5 and 48.5 GPa shows shock‐induced planar deformation features (PDFs) composed of abundant streaks of defects. Similar PDFs were observed in olivine in RBT 04261 and NWA 1950 while those in NWA 1950 were composed of amorphous lamellae. Based on the present results and previous studies, the width and the abundance of lamellar fine‐structures increased with raising shock pressure. Therefore, these features could be used as shock pressure indicators while the estimated pressures may be lower limits due to no information of temperature dependence. For Martian meteorites that experienced heavy shocks, the minimum peak shock pressures of RBT 04261 and NWA 1950 are estimated to be 39.5–48.5 GPa and 48.5–56 GPa, respectively, which are found consistent with those estimated by postshock temperatures expected by the presence of brown olivine. We also investigated shock‐recovered basalts preheated at 750 and 800 °C in order to check the temperature effects on shock features. The results indicate a reduction in vitrifying pressure of plagioclase and a pressure increase for PDFs formation in olivine. Further temperature‐controlled shock recovery experiments will provide us better constraints to understand and to characterize various features found in natural shock events.  相似文献   
5.
Marine Geophysical Research - In the original publication, the Fig. 2 was published incorrectly. The correct version (Fig. 2) is given in this correction. The original article has been...  相似文献   
6.
Northwest Africa (NWA) 6112, Miller Range (MIL) 090206 (plus its pairs: MIL 090340 and MIL 090405), and Divnoe are olivine‐rich ungrouped achondrites. We investigated and compared their petrography, mineralogy, and olivine fabrics. We additionally measured the oxygen isotopic compositions of NWA 6112. They show similar petrography, mineralogy, and oxygen isotopic compositions and we concluded that these five meteorites are brachinite clan meteorites. We found that NWA 6112 and Divnoe had a c axis concentration pattern of olivine fabrics using electron backscattered diffraction (EBSD). NWA 6112 and Divnoe are suggested to have been exposed to magmatic melt flows during their crystallization on their parent body. On the other hand, the three MIL meteorites have b axis concentration patterns of olivine fabrics. This indicates that the three MIL meteorites may be cumulates where compaction of olivine grains was dominant. Alternatively, they formed as residues and were exposed to olivine compaction. The presence of two different olivine fabric patterns implies that the parent body(s) of brachinite clan meteorites experienced diverse igneous processes.  相似文献   
7.
<正>Plume-type is a new branch of ophiolite classification introduced by Dilek and Furnes(2011;GSAB,123,387-).Its most typical example is the komatiite-basalt-gabbrowehrlite assemblage that is exposed on the Gorgona Island off Colombia,South America and is interpreted as a part of the Caribbean large igneous province(LIP).Analogous  相似文献   
8.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
9.
A large meander of the Kuroshio was generated in the region off the southern coast of Japan in August 2004 and continued until approximately July 2005. The formation and decay of the large-meander (LM) path was observed by bottom pressure (BP) sensors installed on inverted echo sounders (PIESs) and a seismic observing system off Shikoku. The variation in BP was examined focusing on the development, persistence, and decay of the LM path. The BP was found to be depressed associated with a Kuroshio path disturbance, called a small meander, and this BP depression led the sea surface height (SSH) depression by up to approximately two months. The temporal phase shift between the sea surface and deep disturbances was significantly greater than those of other small meanders that did not develop into large meanders. After the formation of the LM path, the BP beneath the Kuroshio increased with a lag of approximately two months behind the SSH elevation along with the upward displacement of the main thermocline. The increase in BP is associated with that of the positive southward BP gradient anomaly, i.e., the eastward deep Kuroshio current anomaly, which suggests an enhancement of the topographic steering and stability of the LM path. This is consistent with the fact that no small meanders occurred in the early LM period from late July 2004 to late January 2005.  相似文献   
10.
The growth rate of ringwoodite reaction rims between MgSiO3 perovskite and periclase was investigated at 22.5 GPa and 1,800 °C for 1–24 h using the Kawai-type high-pressure apparatus. The reaction was likely to proceed by a diffusion-controlled mechanism in which the dominant diffusion mechanism was grain-boundary diffusion. The reaction constant (the width of the ringwoodite reaction rim squared divided by time) determined from these experiments was between 1.3 × 10?15 and 5.6 × 10?15 m2/s. A Pt inert marker experiment indicated that the MgO component migrated faster than the SiO2 component in ringwoodite. Thus, either Mg or O having the slower diffusion rate controlled the reaction. Because previous diffusion studies have shown that diffusion rates of O are slower than those of Mg, O would be a rate-controlling element for ringwoodite formation from MgSiO3 perovskite and periclase. The growth rate appeared to be too fast to explain the observed topographic rise (~10 km) inside mantle plumes at the 660-km discontinuity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号