首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  国内免费   1篇
地球物理   5篇
地质学   5篇
海洋学   2篇
天文学   3篇
自然地理   2篇
  2019年   2篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2000年   1篇
  1995年   1篇
  1992年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
The Spectro-Polarimeter for Infrared and Optical Regions (SPINOR) is a new spectro-polarimeter that will serve as a facility instrument for the Dunn Solar Telescope at the National Solar Observatory. This instrument is capable of achromatic polarimetry over a very broad range of wavelengths, from 430 to 1600 nm, allowing for the simultaneous observation of several visible and infrared spectral regions with full Stokes polarimetry. Another key feature of the design is its flexibility to observe virtually any combination of spectral lines, limited only by practical considerations (e.g., the number of detectors available, space on the optical bench, etc.). Visiting Astronomers, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.  相似文献   
2.
Seagrasses are submerged marine plants that are anchored to the substrate and are therefore limited to assimilating nutrients from the surrounding water column or sediment, or by translocating nutrients from adjacent shoots through the belowground rhizome. As a result, seagrasses have been used as reliable ecosystem indicators of surrounding nutrient conditions. The Chandeleur Islands are a chain of barrier islands in the northern Gulf of Mexico that support the only marine seagrass beds in Louisiana, USA, and are the sole location of the seagrass Thalassia testudinum across nearly 1000 km of the coastline from west Florida to central Texas. Over the past 150 years, the land area of the Chandeleur Islands has decreased by over half, resulting in a decline of seagrass cover. The goals of this study were to characterize the status of a climax seagrass species at the Chandeleur Islands, T. testudinum, in terms of leaf nutrient (nitrogen [N] and phosphorus [P]) changes over time, from 1998 to 2015, and to assess potential drivers of leaf nutrient content. Thalassia testudinum leaf nutrients displayed considerable interannual variability in N and P content and molar ratios, which broadly mimicked patterns in annual average dissolved nutrient concentrations in the lower Mississippi River. Hydrological modeling demonstrated the potential for multiple scenarios that would deliver Mississippi River water, and thus nutrients, to T. testudinum at the Chandeleur Islands. Although coastal eutrophication is generally accepted as the proximate cause for seagrass loss globally, there is little evidence that nutrient input from the Mississippi River has driven the dramatic declines observed in seagrasses at the Chandeleur Islands. Rather, seagrass cover along the Chandeleur Islands appears to be strongly influenced by island geomorphological processes. Although variable over time, the often elevated nutrient levels of the climax seagrass species, T. testudinum, which are potentially driven by river-derived nutrient inputs, raises an important consideration of the potential loss of the ecosystem functions and services associated with these declining seagrass meadows.  相似文献   
3.
Many research tools for lahar hazard assessment have proved wholly unsuitable for practical application to an active volcanic system where field measurements are challenging to obtain. Two simple routing models, with minimal data demands and implemented in a geographical information system (GIS), were applied to dilute lahars originating from Soufrière Hills Volcano, Montserrat. Single-direction flow routing by path of steepest descent, commonly used for simulating normal stream-flow, was tested against LAHARZ, an established lahar model calibrated for debris flows, for ability to replicate the main flow routes. Comparing the ways in which these models capture observed changes, and how the different modelled paths deviate can also provide an indication of where dilute lahars, do not follow behaviour expected from single-phase flow models. Data were collected over two field seasons and provide (1) an overview of gross morphological change after one rainy season, (2) details of dominant channels at the time of measurement, and (3) order of magnitude estimates of individual flow volumes. Modelling results suggested both GIS-based predictive tools had associated benefits. Dominant flow routes observed in the field were generally well-predicted using the hydrological approach with a consideration of elevation error, while LAHARZ was comparatively more successful at mapping lahar dispersion and was better suited to long-term hazard assessment. This research suggests that end-member models can have utility for first-order dilute lahar hazard mapping.  相似文献   
4.
5.
We investigate the accuracy to which we can retrieve the solar photospheric magnetic field vector using the Helioseismic and Magnetic Imager (HMI) that will fly onboard of the Solar Dynamics Observatory by inverting simulated HMI profiles. The simulated profiles realistically take into account the effects of the photon noise, limited spectral resolution, instrumental polarization modulation, solar p modes, and temporal averaging. The accuracy of the determination of the magnetic field vector is studied by considering the different operational modes of the instrument.  相似文献   
6.
Terrain is a surface phenomenon that is measured, modelled, and mapped. However, it is continuously variable and must be simulated by points or mathematical equations that are inherently approximations. The error induced by digitally represented terrain can propagate to surface derivatives and geographical information science (GIS) applications where topography is considered. This can lead to uncertainty in model predictions and the use of data that are unfit for the application to which they are intended. This article outlines the problem of uncertainty in terrain representation and demonstrates the consequences for volcanic mudflow modelling. The response of a simple least-cost single flow algorithm to input parameters was investigated in order to assess output variation from the different sources of input variation. Elevation error was modelled with a probability density function (PDF) and propagated through stochastic simulation (Monte Carlo). Such combined uncertainty and sensitivity analyses enabled a qualitative judgement of the relative significance of elevation error on the flow model prediction. Different methods for terrain model construction were considered and show that supplementing global positioning system (GPS) measurements with information from field notes and reconnaissance photographs greatly improved the model performance and reduced the uncertainty. It is concluded that in terms of validity of model results, there is no substitute for constructing an elevation model that is informed by the terrain.  相似文献   
7.
Source‐to‐sink studies and numerical modelling software are increasingly used to better understand sedimentary basins, and to predict sediment distributions. However, predictive modelling remains problematic in basins dominated by salt tectonics. The Lower Cretaceous delta system of the Scotian Basin is well suited for source‐to‐sink studies and provides an opportunity to apply this approach to a region experiencing active salt tectonism. This study uses forward stratigraphic modelling software and statistical analysis software to produce predictive stratigraphic models of the central Scotian Basin, test their sensitivity to different input parameters, assess proposed provenance pathways, and determine the distribution of sand and factors that control sedimentation in the basin. Models have been calibrated against reference wells and seismic surfaces, and implement a multidisciplinary approach to define simulation parameters. Simulation results show that previously proposed provenance pathways for the Early Cretaceous can be used to generate predictive stratigraphic models, which simulate the overall sediment distribution for the central Scotian Basin. Modelling confirms that the shaly nature of the Naskapi Member is the result of tectonic diversion of the Sable and Banquereau rivers and suggests additional episodic diversion during the deposition of the Cree Member. Sand is dominantly trapped on the shelf in all units, with transport into the basin along salt corridors and as a result of turbidity current flows occurring in the Upper Missisauga Formation and Cree Member. This led to sand accumulation in minibasins with a large deposit seawards of the Tantallon M‐41 well. Sand also appears to bypass the basin via salt corridors which lead to the down‐slope edge of the study area. Sensitivity analysis suggests that the grain size of source sediments to the system is the controlling factor of sand distribution. The methodology applied to this basin has applications to other regions complicated by salt tectonics, and where sediment distribution and transport from source‐to‐sink remain unclear.  相似文献   
8.
On 20th May 2006 the Soufrière Hills Volcano on the Caribbean island of Montserrat experienced a large dome collapse and intense rainfall generated flash floods. The floods had very high loads of volcanic debris derived both from this and previous eruptions and can thus be classified as lahars. The floods reached unusually high water levels and caused substantial geomorphic change in the Belham Valley. Detailed rainfall and geomorphological data, coupled with the precise timing of events and yewitness accounts have facilitated an assessment of the relative importance of rainfall volume and intensity, older volcanic debris, pre- and syn-flood tephra fall and the extent of pre-flood vegetation damage for the behavior of this and subsequent sediment-laden floods in this setting. The change in runoff behavior was controlled by preexisting vegetation damage and synchronous tephra fall and this was critically important in controlling the impact of these flash floods. Although rainfall intensity and volume have some control on flood occurrence they are not the critical control on flash flood impact on the geomorphology in the Belham Valley. A significant conclusion of this study is that the extreme nature of the flash floods was not caused by extreme rainfall (as is commonly believed to be the primary cause of flash floods) but rather it was the result of changed runoff behaviour caused by the widespread syn-flood tephra deposition and importantly the widespread vegetation damage by volcanic-associated acid rain in the preceding weeks.  相似文献   
9.
The wreck U Pezzo, excavated within the Saint Florent Gulf in northern Corsica was identified as the pink, Saint Etienne, a merchant ship which sank on January 31, 1769. In order to determine the composition of organic materials used to coat the hull or to waterproof different parts of the pink, a study of several samples, using molecular biomarker and carbon isotopic analysis, was initiated. The results revealed that the remarkable yellow coat, covering the outside planks of the ship’s bottom under the water line, is composed of sulfur, tallow (of ox and not of cetacean origin) and black pitch which corresponds to a mixture called “couroi” or “stuff”. Onboard ropes had been submitted to a tarring treatment with pitch. Hairs mixed with pitch were identified in samples collected between the two layers of the hull or under the sheathing planking. The study also provides a key model for weathering of pitch, as different degrees of degradation were found between the surface and the heart of several samples. Accordingly, molecular parameters for alteration were proposed. Furthermore novel mixed esters between terpenic and diterpenic alcohols and the free major fatty acids (C14:0, C16:0, C18:0) were detected in the yellow coat.  相似文献   
10.
Dredging operations produce considerable quantities of materials, to be managed and this opens an opportunity for valorization in civil engineering. However, the contamination of the dredged sediments has become a major problem to solve. The major contaminants are heavy metals and organic compounds. This study focuses on the use of phosphoric acid (H3PO4) to stabilize heavy metals from sediments and destroy organic matter by calcination at 650 °C with a goal of using sediments in roadworks. Several studies have been conducted in this eld. The stabilized materials obtained have been used in civil engineering. The main purpose of this work is to discuss the environmental behavior of marine sediment treated by phosphatation and calcination. Two types of phosphoric acids were used. The pH dependence leaching test has been used as the basic characterization to evaluate the effect of the type of phosphoric acid on the metals behavior in a valorization scenario. The standard leaching test and the Toxicity Characteristic Leaching Procedure (TCLP) were conducted as compliance tests. In regards of the obtained results, the environmental assessment has also shown a reduction in the availability of targeted heavy metals in alkaline environment whatever the type of acid used for treatment. This opens opportunities for co-valorization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号