首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1598篇
  免费   87篇
  国内免费   17篇
测绘学   36篇
大气科学   117篇
地球物理   415篇
地质学   573篇
海洋学   156篇
天文学   200篇
综合类   3篇
自然地理   202篇
  2023年   6篇
  2022年   6篇
  2021年   18篇
  2020年   35篇
  2019年   26篇
  2018年   37篇
  2017年   49篇
  2016年   50篇
  2015年   42篇
  2014年   48篇
  2013年   81篇
  2012年   56篇
  2011年   101篇
  2010年   82篇
  2009年   93篇
  2008年   78篇
  2007年   53篇
  2006年   83篇
  2005年   70篇
  2004年   56篇
  2003年   56篇
  2002年   46篇
  2001年   27篇
  2000年   30篇
  1999年   18篇
  1998年   25篇
  1997年   24篇
  1996年   27篇
  1995年   24篇
  1994年   26篇
  1993年   21篇
  1992年   19篇
  1991年   12篇
  1990年   19篇
  1989年   16篇
  1988年   12篇
  1987年   11篇
  1986年   16篇
  1985年   18篇
  1984年   22篇
  1983年   15篇
  1982年   29篇
  1981年   18篇
  1980年   7篇
  1979年   14篇
  1978年   13篇
  1977年   10篇
  1976年   14篇
  1974年   5篇
  1973年   15篇
排序方式: 共有1702条查询结果,搜索用时 16 毫秒
1.
Although Late Cambrian microbial build-ups were recognized in the Point Peak Member of the Wilberns Formation in Central Texas (USA) nearly 70 years ago, only a few studies focused specifically on the build-ups themselves. This study focuses on the interpretation of the regional (15 measured sections described in literature representing an area of 8000 km2) and local (field and drone photogrammetry studies in a 25 km2 area from within south Mason County) microbial build-up occurrence, describes their growth phases and details their interactions with the surrounding inter-build-up sediments. The study establishes the occurrence of microbial build-ups in the lower and upper Point Peak members (the Point Peak Member is informally broken up into the lower Point Peak and the upper Point Peak members separated by Plectotrophia zone). The lower Point Peak Member consists of three <1 m thick microbial bioherms and biostrome units, in addition to heterolithic and skeletal/ooid grainstone and packstone beds. One, up to 14 m thick, microbial unit associated with inter-build-up skeletal and ooid grainstone and packstone beds, intercalated with mixed siliciclastic–carbonate silt beds, characterizes the upper Point Peak member. The microbial unit in the upper Point Peak member displays a three-phase growth evolution, from an initial colonization phase on flat based, rip-up clast lenses, to a second aggradation and lateral expansion phase, into a third well-defined capping phase. The ultimate demise of the microbial build-ups is interpreted to have been triggered by an increase of water turbidity caused by a sudden influx of fine siliciclastics. The lower Point Peak member represents inner ramp shallow subtidal and intertidal facies and the upper Point Peak member corresponds to mid-outer ramp subtidal facies. Understanding the morphological architecture and depositional context of these features is of importance for identifying signatures of early life on Earth.  相似文献   
2.
Meandering river sinuosity increases until the channel erodes into itself (neck cutoff) or forms a new channel over the floodplain (chute cutoff) and sinuosity is reduced. Unlike neck cutoff, which can be measured or modelled without considering overbank processes, chute cutoff must be at least partially controlled by channel-forming processes on the floodplain. Even though chute cutoff controls meandering river form, the processes that cause chute cutoff are not well understood. This study analyses the morphology of two incipient chute cutoffs along the East Fork White River, Indiana, USA, using high temporal and spatial resolution UAS-based LiDAR and aerial photography. LiDAR and aerial imagery obtained between 1998 and 2019 reveals that large scour holes formed in the centre of both chutes sometime after chute channel initiation. A larger analysis within the study watershed reveals that scour holes within incipient chutes can be stable or unstable, and tend to stabilize when the chute is colonized by native vegetation and forest. When the scour holes form in farmed floodplain, they enlarge rapidly after initial formation and contribute to complete chute cutoff. In addition, this study shows that the formation of scour holes can occur in response to common, relatively low-magnitude floods and that the amount of incipient chute erosion does not depend on peak flood magnitude. The role of scour holes in enlarging chute channels could be an important mechanism for chute channel evolution in meandering rivers. This study also confirms that understanding the relationships among flow, land cover, and cutoff morphology is substantially improved with on-demand remote sensing techniques like integrated UAS and LiDAR. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
Building pressure cycling (BPC) is becoming an increasingly important tool for studying vapor intrusion. BPC has been used to distinguish subslab and indoor sources of vapor intrusion as well as to define reasonable worst case volatile organic compound mass discharge into a structure. Analyses have been performed both semi-quantitatively with concentration trends and quantitatively with more rigorous flux calculation and source attribution methods. This paper reviews and compares the protocols and outcomes from multiple published applications of this technology to define the key variables that control performance. Common lessons learned are identified, including those that help define the range of building size and type to which BPC is applicable. Differences in test protocols are discussed, recognizing that the complexity of the test protocol required depends on the particular objectives of each project. Research gaps are identified and tabulated for future validation studies and applications.  相似文献   
4.
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions.  相似文献   
5.
Water runoff and sediment transport from agricultural uplands are substantial threats to water quality and sustained crop production. To improve soil and water resources, farmers, conservationists, and policy‐makers must understand how landforms, soil types, farming practices, and rainfall interact with water runoff and soil erosion processes. To that end, the Iowa Daily Erosion Project (IDEP) was designed and implemented in 2003 to inventory these factors across Iowa in the United States. IDEP utilized the Water Erosion Prediction Project (WEPP) soil erosion model along with radar‐derived precipitation data and government‐provided slope, soil, and management information to produce daily estimates of soil erosion and runoff at the township scale (93 km2 [36 mi2]). Improved national databases and evolving remote sensing technology now permit the derivation of slope, soil, and field‐level management inputs for WEPP. These remotely sensed parameters, along with more detailed meteorological data, now drive daily WEPP hillslope soil erosion and water runoff estimates at the small watershed scale, approximately 90 km2 (35 mi2), across sections of multiple Midwest states. The revisions constitute a substantial improvement as more realistic field conditions are reflected, more detailed weather data are utilized, hill slope sampling density is an order of magnitude greater, and results are aggregated based on surface hydrology enabling further watershed research and analysis. Considering these improvements and the expansion of the project beyond Iowa it was renamed the Daily Erosion Project (DEP). Statistical and comparative evaluations of soil erosion simulations indicate that the sampling density is adequate and the results are defendable. The modeling framework developed is readily adaptable to other regions given suitable inputs. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
6.
One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data-gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.  相似文献   
7.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
8.
9.
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global‐scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional‐scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional‐scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional‐scale models with global‐scale analyses would greatly enhance knowledge of the global groundwater depletion problem.  相似文献   
10.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号