首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  国内免费   1篇
测绘学   2篇
大气科学   12篇
地球物理   10篇
地质学   22篇
海洋学   10篇
天文学   9篇
自然地理   13篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   8篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1983年   1篇
排序方式: 共有78条查询结果,搜索用时 46 毫秒
1.
The equation of state of MgGeO3 perovskite was determined between 25 and 66 GPa using synchrotron X-ray diffraction with the laser-heated diamond anvil cell. The data were fit to a third-order Birch–Murnaghan equation of state and yielded a zero-pressure volume (V 0) of 182.2 ± 0.3 Å3 and bulk modulus (K 0) of 229 ± 3 GPa, with the pressure derivative (K= (?K 0/?P) T ) fixed at 3.7. Differential stresses were evaluated using lattice strain theory and found to be typically less than about 1.5 GPa. Theoretical calculations were also carried out using density functional theory from 0 to 205 GPa. The equation of state parameters from theory (V 0 = 180.2 Å3, K 0 = 221.3 GPa, and K0 = 3.90) are in agreement with experiment, although theoretically calculated volumes are systematically lower than experiment. The properties of the perovskite phase were compared to MgGeO3 post-perovskite phase near the observed phase transition pressure (~65 GPa). Across the transition, the density increased by 2.0(0.7)%. This is in excellent agreement with the theoretically determined density change of 1.9%; however both values are larger than those for the (Mg,Fe)SiO3 phase transition. The bulk sound velocity change across the transition is small and is likely to be negative [?0.5(1.6)% from experiment and ?1.2% from theory]. These results are similar to previous findings for the (Mg,Fe)SiO3 system. A linearized Birch–Murnaghan equation of state fit to each axis yielded zero-pressure compressibilities of 0.0022, 0.0009, and 0.0016 GPa?1 for the a, b, and c axis, respectively. Magnesium germanate appears to be a good analog system for studying the properties of the perovskite and post-perovskite phases in silicates.  相似文献   
2.
We report results from the highest-resolution simulations of global warming yet performed with an atmospheric general circulation model. We compare the climatic response to increased greenhouse gases of the National Center for Atmospheric Research (NCAR) climate model, CCM3, at T42 and T170 resolutions (horizontal grid spacing of 300 and 75 km respectively). All simulations use prescribed sea surface temperatures (SST). Simulations of the climate of 2100 ad use SSTs based on those from NCAR coupled model, Climate System Model (CSM). We find that the global climate sensitivity and large-scale patterns of climate change are similar at T42 and T170. However, there are important regional scale differences that arise due to better representation of topography and other factors at high resolution. Caution should be exercised in interpreting specific features in our results both because we have performed climate simulations using a single atmospheric general circulation model and because we used with prescribed sea surface temperatures rather than interactive ocean and sea-ice models.  相似文献   
3.
Single-crystal brucite, Mg(OH)2, was studied to 14 GPa in a quasi-hydrostatic pressure medium using a diamond anvil cell and energy-dispersive synchrotron x-ray diffraction. The parameters of a third-order Birch-Murnaghan equation of state fit to the data are: K OT=42(2) GPa, and (?K OT/?P)T= 5.7(5). The bulk modulus is significantly lower than that obtained in recent shock compression and powder x-ray diffraction experiments under non-hydrostatic conditions. No evidence was found for a transition involving the Mg -O sub-structure over the pressure range of these experiments. This implies that the structural change previously identified at high pressure by Raman spectroscopy probably involves rearrangement of hydrogen atoms, leaving the Mg — O substructure largely unaffected.  相似文献   
4.
5.
We compared total mercury (THg) concentrations in the fur of northern fur seals (Callorhinus ursinus) from the depleted Pribilof Islands population with those of both declining and thriving populations of Steller sea lions (Eumetopias jubatus) from Prince William Sound (PWS) and Southeast Alaska (SEA), respectively. Relatively low wet weight concentrations (ranges) of THg were detected in the fur of Steller sea lion (SSL) pups (0.90-3.14 microg/g) and juveniles (0.56-6.75 microg/g) from both areas in 1998 and 2000 compared to northern fur seal (NFS) pups (3.15-8.14 microg/g) in 2000. The mean concentration +/- SD for SSLs sampled were 1.46 +/- 0.64 microg/g for pups (n = 22) and 2.74 +/- 2.89 microg/g for juveniles (n = 6). Analyses indicated higher THg concentrations from SSL pups from PWS compared to the SEA. Mean +/- SD. THg in the NFS pups was 4.90 +/- 1.42 microg/g (n = 34) and for post-partum dams was 7.84 +/- 1.78 microg/g (n = 12).  相似文献   
6.
Two high value species, yellowtail kingfish (Seriola lalandi) and hāpuku (groper, Polyprion oxygeneios), have been identified as suitable new candidates for New Zealand aquaculture. This paper reviews the research by NIWA and collaborators conducted to test the biological, technological and economic feasibility of farming these two species. NIWA now has the capability to produce sufficient kingfish fingerlings per year to meet the needs of the early stages of an industry. Advances in hāpuku aquaculture have also been significant, from spawning in captivity through to the selection of juveniles for improved growth. Recently, the first spawning of captive hāpuku F1 broodstock and production of F2 eggs, larvae and juveniles was achieved. Although hāpuku larval survival remains variable, the ability to close the life cycle, and the availability of domesticated broodstock, provide a significant step forward and increase the chances of this species being commercially farmed.  相似文献   
7.
The declining health of marine ecosystems around the world is evidence that current piecemeal governance is inadequate to successfully support healthy coastal and ocean ecosystems and sustain human uses of the ocean. One proposed solution to this problem is ecosystem-based marine spatial planning (MSP), which is a process that informs the spatial distribution of activities in the ocean so that existing and emerging uses can be maintained, use conflicts reduced, and ecosystem health and services protected and sustained for future generations. Because a key goal of ecosystem-based MSP is to maintain the delivery of ecosystem services that humans want and need, it must be based on ecological principles that articulate the scientifically recognized attributes of healthy, functioning ecosystems. These principles should be incorporated into a decision-making framework with clearly defined targets for these ecological attributes. This paper identifies ecological principles for MSP based on a synthesis of previously suggested and/or operationalized principles, along with recommendations generated by a group of twenty ecologists and marine scientists with diverse backgrounds and perspectives on MSP. The proposed four main ecological principles to guide MSP—maintaining or restoring: native species diversity, habitat diversity and heterogeneity, key species, and connectivity—and two additional guidelines, the need to account for context and uncertainty, must be explicitly taken into account in the planning process. When applied in concert with social, economic, and governance principles, these ecological principles can inform the designation and siting of ocean uses and the management of activities in the ocean to maintain or restore healthy ecosystems, allow delivery of marine ecosystem services, and ensure sustainable economic and social benefits.  相似文献   
8.
Human-caused climate change can affect weather and climate extremes, as well as mean climate properties. Analysis of observations and climate model results shows that previously rare (5th percentile) summertime average temperatures are presently occurring with greatly increased frequency in some regions of the 48 contiguous United States. Broad agreement between observations and a mean of results based upon 16 global climate models suggests that this result is more consistent with the consequences of increasing greenhouse gas concentrations than with the effects of natural climate variability. This conclusion is further supported by a statistical analysis based on resampling of observations and model output. The same climate models project that the prevalence of previously extreme summer temperatures will continue to increase, occurring in well over 50% of summers by mid-century.  相似文献   
9.
We investigate the ability of a global atmospheric general circulation model (AGCM) to reproduce observed 20 year return values of the annual maximum daily precipitation totals over the continental United States as a function of horizontal resolution. We find that at the high resolutions enabled by contemporary supercomputers, the AGCM can produce values of comparable magnitude to high quality observations. However, at the resolutions typical of the coupled general circulation models used in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, the precipitation return values are severely underestimated.  相似文献   
10.
The climate of the last glacial maximum (LGM) is simulated with a high-resolution atmospheric general circulation model, the NCAR CCM3 at spectral truncation of T170, corresponding to a grid cell size of roughly 75 km. The purpose of the study is to assess whether there are significant benefits from the higher resolution simulation compared to the lower resolution simulation associated with the role of topography. The LGM simulations were forced with modified CLIMAP sea ice distribution and sea surface temperatures (SST) reduced by 1°C, ice sheet topography, reduced CO2, and 21,000 BP orbital parameters. The high-resolution model captures modern climate reasonably well, in particular the distribution of heavy precipitation in the tropical Pacific. For the ice age case, surface temperature simulated by the high-resolution model agrees better with those of proxy estimates than does the low-resolution model. Despite the fact that tropical SSTs were only 2.1°C less than the control run, there are many lowland tropical land areas 4–6°C colder than present. Comparison of T170 model results with the best constrained proxy temperature estimates (noble gas concentrations in groundwater) now yield no significant differences between model and observations. There are also significant upland temperature changes in the best resolved tropical mountain belt (the Andes). We provisionally attribute this result in part as resulting from decreased lateral mixing between ocean and land in a model with more model grid cells. A longstanding model-data discrepancy therefore appears to be resolved without invoking any unusual model physics. The response of the Asian summer monsoon can also be more clearly linked to local geography in the high-resolution model than in the low-resolution model; this distinction should enable more confident validation of climate proxy data with the high-resolution model. Elsewhere, an inferred salinity increase in the subtropical North Atlantic may have significant implications for ocean circulation changes during the LGM. A large part of the Amazon and Congo Basins are simulated to be substantially drier in the ice age—consistent with many (but not all) paleo data. These results suggest that there are considerable benefits derived from high-resolution model regarding regional climate responses, and that observationalists can now compare their results with models that resolve geography at a resolution comparable to that which the proxy data represent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号