首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   3篇
天文学   2篇
自然地理   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2007年   1篇
  1990年   1篇
  1988年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Based on the analysis of various geophysical data, namely, free-air gravity anomalies, magnetic anomalies, upper mantle seismic tomography images, and topography/bathymetry maps, we single out the major structural elements in the Circum Arctic and present the reconstruction of their locations during the past 200 million years. The configuration of the magnetic field patterns allows revealing an isometric block, which covers the Alpha–Mendeleev Ridges and surrounding areas. This block of presumably continental origin is the remnant part of the Arctida Plate, which was the major tectonic element in the Arctic region in Mesozoic time. We believe that the subduction along the Anyui suture in the time period from 200 to 120 Ma caused rotation of the Arctida Plate, which, in turn, led to the simultaneous closure of the South Anyui Ocean and opening of the Canadian Basin. The rotation of this plate is responsible for extension processes in West Siberia and the northward displacement of Novaya Zemlya relative to the Urals–Taimyr orogenic belt. The cratonic-type North American, Greenland, and European Plates were united before 130 Ma. At the later stages, first Greenland was detached from North America, which resulted in the Baffin Sea, and then Greenland was separated from the European Plate, which led to the opening of the northern segment of the Atlantic Ocean. The Cenozoic stage of opening of the Eurasian Basin and North Atlantic Ocean is unambiguously reconstructed based on linear magnetic anomalies. The counter-clockwise rotation of North America by an angle of ~ 15° with respect to Eurasia and the right lateral displacement to 200–250 km ensure an almost perfect fit of the contours of the deep water basin in the North Atlantic and Arctic Oceans.  相似文献   
2.
A. B. Gaina 《Astrophysics》1990,33(2):481-482
  相似文献   
3.
4.
5.
Knowledge about the Arctic tectonic structure has changed in the last decade as a large number of new datasets have been collected and systematized. Here, we review the most updated, publicly available Circum-Arctic digital compilations of magnetic and gravity data together with new models of the Arctic’s crust. Available tomographic models have also been scrutinized and evaluated for their potential to reveal the deeper structure of the Arctic region. Although the age and opening mechanisms of the Amerasia Basin are still difficult to establish in detail, interpreted subducted slabs that reside in the High Arctic’s lower mantle point to one or two episodes of subduction that consumed crust of possibly Late Cretaceous–Jurassic age. The origin of major igneous activity during the Cretaceous in the central Arctic (the Alpha–Mendeleev Ridge) and in the proximity of rifted margins (the so-called High Arctic Large Igneous Province—HALIP) is still debated. Models of global plate circuits and the connection with the deep mantle are used here to re-evaluate a possible link between Arctic volcanism and mantle plumes.  相似文献   
6.
We have studied pebbles of igneous rocks from the Lower Jurassic sedimentary succession of Hall Island, Franz Josef Land. Pebbles are represented by felsic intrusive and extrusive rocks, often cataclased and greisenized. The U–Pb age of crystallization for zircons of the studied samples yielded the Latest Devonian–Early Carboniferous and Early–Middle Permian ages. In addition, the studied zircons demonstrate a broad scatter of ages, from Middle Paleozoic to Mesozoic, suggesting repeated thermal reworking and metamorphism of granites. It is shown that coeval Late Paleozoic magmatism indicates the similarity of the geological evolution of the northern Barents Sea and the Severnaya Zemlya archipelago.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号