首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   12篇
测绘学   4篇
大气科学   1篇
地球物理   36篇
地质学   15篇
海洋学   22篇
天文学   8篇
自然地理   4篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   4篇
  2011年   11篇
  2010年   6篇
  2009年   7篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2004年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有90条查询结果,搜索用时 156 毫秒
1.
Large wood (LW) is an ecosystem engineer and keystone structure in river ecosystems, influencing a range of hydromorphological and ecological processes and contributing to habitat heterogeneity and ecosystem condition. LW is increasingly being used in catchment restoration, but restored LW jams have been observed to differ in physical structure to naturally occurring jams, with potential implications for restoration outcomes. This article examines the structural complexity and ecosystem engineering effects of LW jams at four sites with varying management intensity incorporating natural and restored wood. Our results reveal: (i) structural complexity and volume of jams was highest in the site with natural jams and low intensity riparian management, and lowest in the suburban site with simple restored jams; and (ii) that structural complexity influences the ecosystem engineering role of LW, with more complex jams generating the greatest effects on flow hydraulics (flow concentration, into bed flows) and sediment characteristics (D50, organic content, fine sediment retention) and the simplest flow deflector-style restored jams having the least pronounced effects. We present a conceptual model describing a continuum of increasing jam structural complexity and associated hydromorphological effects that can be used as a basis for positioning and evaluating other sites along the management intensity spectrum to help inform restoration design and best practice.  相似文献   
2.
ABSTRACT

Characterizing, understanding and better estimating uncertainties are key concerns for drawing robust conclusions when analyzing changing socio-hydrological systems. Here we suggest developing a perceptual model of uncertainty that is complementary to the perceptual model of the socio-hydrological system and we provide an example application to flood risk change analysis. Such a perceptual model aims to make all relevant uncertainty sources – and different perceptions thereof – explicit in a structured way. It is a first step to assessing uncertainty in system outcomes that can help to prioritize research efforts and to structure dialogue and communication about uncertainty in interdisciplinary work.  相似文献   
3.
Water scarcity and climatic variability in the Mediterranean region have traditionally required the construction of dams to guarantee water supply for irrigation, industrial and urban uses and hydropower production. Reservoirs affect the hydrology of the river downstream, but the magnitude and persistence of these effects are still poorly unknown. Understanding the magnitude of these effects is the objective of this paper, in which we analyse the flow regimes of twelve rivers located in the NW Mediterranean region. Different temporal scales (daily, monthly and annual) are used for the analysis and also to estimate flow variables associated with flow magnitude, frequency, duration and variability. It is shown that dams alter the hydrological regime of most of the studied rivers, with special influence on monthly flows and flood magnitude and frequency. The most altered rivers (Muga and Siurana, NE Iberian Peninsula) experience a complete overturn in their flow regime with, for instance, flood reduction reaching up to 76% for the 2‐year flood event. Other rivers showed lower changes in hydrology (e.g. Orb and Têt). Annual runoff showed a pattern of decrease in all the studied rivers (regulated and non‐regulated) indicating that besides dams (i.e. reservoir evaporation), other factors likely affect water yield. A general recovery downstream from dams is also observed at all temporal scales, mainly because of the inflow from tributaries. Although dams have a clear impact on the hydrology of Mediterranean rivers, water withdrawals and diversions for irrigation and other consumptive uses also affected the hydrological patterns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
4.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   
5.
We present a comprehensive characterisation of the physical, mineralogical, geomechanical, geophysical, and hydrodynamic properties of Corvio sandstone. This information, together with a detailed assessment of anisotropy, is needed to establish Corvio sandstone as a useful laboratory rock‐testing standard for well‐constrained studies of thermo–hydro–mechanical–chemical coupled phenomena associated with CO2 storage practices and for geological reservoir studies in general. More than 200 core plugs of Corvio sandstone (38.1 and 50 mm diameters, 2:1 length‐to‐diameter ratio) were used in this characterisation study, with a rock porosity of 21.7 ± 1.2%, dry density 2036 ± 32 kg m?3, and unconfined compressive and tensile strengths of 41 ± 3.28 and 2.3 ± 0.14 MPa, respectively. Geomechanical tests show that the rock behaves elastically between ~10 and ~18 MPa under unconfined conditions with associated Young's modulus and Poisson's ratio of 11.8 ± 2.8 GPa and 0.34 ± 0.01 GPa, respectively. Permeability abruptly decreases with confining pressure up to ~10 MPa and then stabilises at ~1 mD. Ultrasonic P‐ and S‐wave velocities vary from about 2.8–3.8 km s?1 and 1.5–2.4 km s?1, respectively, over confining and differential pressures between 0.1 and 35 MPa, allowing derivation of associated dynamic elastic moduli. Anisotropy was investigated using oriented core plugs for electrical resistivity, elastic wave velocity and attenuation, permeability, and tracer injection tests. Corvio sandstone shows weak transverse isotropy (symmetry axis normal to bedding) of <10% for velocity and <20% for attenuation.  相似文献   
6.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
7.
8.
A detailed reconstruction of the stratigraphic and tectonic setting of the Gulf of Pozzuoli (Naples Bay) is provided on the basis of newly acquired single channel seismic profiles coupled with already recorded marine magnetics gathering the volcanic nature of some seismic units. Inferences for the tectonic and magmatic setting of the Phlegrean Fields volcanic complex, a volcanic district surrounding the western part of the Gulf of Naples, where volcanism has been active since at least 50 ka, are also discussed. The Gulf of Pozzuoli represents the submerged border of the Phlegrean caldera, resulting from the volcano-tectonic collapse induced from the pyroclastic flow deposits of the Campanian Ignimbrite (35 ka). Several morpho-depositional units have been identified, i.e., the inner continental shelf, the central basin, the submerged volcanic banks and the outer continental shelf. The stratigraphic relationships between the Quaternary volcanic units related to the offshore caldera border and the overlying deposits of the Late Quaternary depositional sequence in the Gulf of Pozzuoli have been highlighted. Fourteen main seismic units, both volcanic and sedimentary, tectonically controlled due to contemporaneous folding and normal faulting have been revealed by geological interpretation. Volcanic dykes, characterized by acoustically transparent sub-vertical bodies, locally bounded by normal faults, testify to the magma uprising in correspondence with extensional structures. A large field of tuff cones interlayered with marine deposits off the island of Nisida, on the western rim of the gulf, is related to the emplacement of the Neapolitan Yellow Tuff deposits. A thick volcanic unit, exposed over a large area off the Capo Miseno volcanic edifice is connected with the Bacoli-Isola Pennata-Capo Miseno yellow tuffs, cropping out in the northern Phlegrean Fields.  相似文献   
9.
The hypothesis that benthic foraminifera are useful proxies of local methane emissions from the seafloor has been verified on sediment core KS16 from the headwall of the Ana submarine landslide in the Eivissa Channel, Western Mediterranean Sea. The core MS312 from a nearby location with no known methane emissions is utilised as control. The core was analysed for biostratigraphy, benthic foraminiferal assemblages, Hyalinea balthica and Uvigerina peregrina carbon and oxygen stable isotope composition, and sedimentary structures. The upper part of the core records post-landslide deglacial and Holocene normal marine hemipelagic sediments with highly abundant benthic foraminifera species that are typical of outer neritic to upper bathyal environment. In this interval, the δ13C composition of benthic foraminifera indicates normal marine environment analogous to those found in the control core. Below the sedimentary hiatus caused by the emplacement of the slide, the foraminiferal assemblages are characterised by lower density and higher Shannon Index. Markedly negative δ13C shifts in benthic foraminifera are attributed to the release of methane through the seabed. The mean values of the 13C anomaly in U. peregrina are ? 0.951 ± 0.208 in the pre-landslide sediments, and ? 0.269 ± 0.152 in post-slide reworked sediments deposited immediately above the hiatus. The δ13C anomaly in Hyalinea balthica is ? 2.497 ± 0.080 and ? 2.153 ± 0.087, respectively. To discard the diagenetic effects on the δ13C anomaly, which could have been induced by Ca–Mg replacement and authigenic carbonate overgrowth on foraminifera tests, a benthic foraminifera subsample has been treated following an oxidative and reductive cleaning protocol. The cleaning has resulted, only in some cases, in a slight reduction of the anomaly by 0.95% for δ13C and < 0.80% for δ18O. Therefore, the first conclusion is that the diagenetic alteration is minor and it does not alter significantly the overall carbon isotopic anomaly in the core. Consequently, the pre-landslide sediments have been subject to pervasive methane emissions during a time interval of several thousand years. Methane emissions continued during and immediately after the occurrence of Ana Slide at about 61.5 ka. Subsequently, methane emissions decreased and definitely ceased during the last deglaciation and the Holocene.  相似文献   
10.
Fluvial dissolved Fe concentrations decrease upon mixing with seawater, resulting in the formation of Fe-floccules. However, a clear understanding of the fate of these floccules has yet to be established. Assessing how tidal processes affect the formation of Fe-colloids in the Leirárvogur estuary, SW Iceland, is an important step in understanding the formation and potential deposition of estuarine Fe-rich minerals within this estuarine system. The Leirárvogur estuary drains predominately Fe-rich basalt, increasing the likelihood of detecting changes in Fe-phases. Fluvial waters and local lake waters that drain into the estuary were compared and the effects of seasonal changes were considered, in an attempt to understand how varying end-members and external factors play a role in Fe-rich mineral formation. Aqueous and colloidal Fe concentrations were found to be greater towards the head of the Leirárvogur estuary, suggesting that potential Fe-rich minerals and complexes are forming at sites of fluvial input. Increasing suspended colloidal Fe towards the estuary mouth suggests that Fe-colloids are readily transported seaward.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号