首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   2篇
  2012年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
As part of the Canadian contribution to the International Polar Year (IPY), several major international research programs have focused on offshore arctic marine ecosystems. The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter food web structure and ecosystem services provided to Northerners. At least four key findings from these projects relating to arctic heterotrophic food web, pelagic-benthic coupling and biodiversity have emerged: (1) Contrary to a long-standing paradigm of dormant ecosystems during the long arctic winter, major food web components showed relatively high level of winter activity, well before the spring release of ice algae and subsequent phytoplankton bloom. Such phenological plasticity among key secondary producers like zooplankton may thus narrow the risks of extreme mismatch between primary production and secondary production in an increasingly variable arctic environment. (2) Tight pelagic-benthic coupling and consequent recycling of nutrients at the seafloor characterize specific regions of the Canadian Arctic, such as the North Water polynya and Lancaster Sound. The latter constitute hot spots of benthic ecosystem functioning compared to regions where zooplankton-mediated processes weaken the pelagic-benthic coupling. (3) In contrast with another widely shared assumption of lower biodiversity, arctic marine biodiversity is comparable to that reported off Atlantic and Pacific coasts of Canada, albeit threatened by the potential colonization of subarctic species. (4) The rapid decrease of summer sea-ice cover allows increasing numbers of killer whales to use the Canadian High Arctic as a hunting ground. The stronger presence of this species, bound to become a new apex predator of arctic seas, will likely affect populations of endemic arctic marine mammals such as the narwhal, bowhead, and beluga whales.  相似文献   
2.
During the International Polar Year (IPY), large international research programs provided a unique opportunity for assessing the current state and trends in major components of arctic marine ecosystems at an exceptionally wide spatio-temporal scale: sampling covered most regions of the Canadian Arctic (IPY-Canada??s Three Oceans project), and the coastal and offshore areas of the southeastern Beaufort Sea were monitored over almost a full year (IPY-Circumpolar Flaw Lead project). The general goal of these projects was to improve our understanding of how the response of arctic marine ecosystems to climate warming will alter the productivity and structure of the food web and the ecosystem services it provides to Northerners. The present paper summarizes and discusses six key findings related to primary production (PP), which determines the amount of food available to consumers. (1) Offshore, the warming and freshening of the surface layer is leading to the displacement of large nanophytoplankton species by small picophytoplankton cells, with potentially profound bottom-up effects within the marine food web. (2) In coastal areas, PP increases as favourable winds and the deeper seaward retreat of ice promote upwelling. (3) Multiple upwelling events repeatedly provide food to herbivores throughout the growth season. (4) A substantial amount of pelagic PP occurs under thinning ice and cannot be detected by orbiting sensors. (5) Early PP in the spring does not imply a trophic mismatch with key herbivores. (6) The epipelagic ecosystem is very efficient at retaining carbon in surface waters and preventing its sedimentation to the benthos. While enhanced PP could result in increased fish and marine mammal harvests for Northerners, it will most likely be insufficient for sustainable large-scale commercial fisheries in the Canadian Arctic.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号