首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   12篇
  国内免费   3篇
测绘学   4篇
大气科学   13篇
地球物理   44篇
地质学   102篇
海洋学   23篇
天文学   30篇
综合类   1篇
自然地理   32篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2019年   11篇
  2018年   7篇
  2017年   7篇
  2016年   12篇
  2015年   7篇
  2014年   11篇
  2013年   23篇
  2012年   8篇
  2011年   25篇
  2010年   16篇
  2009年   13篇
  2008年   16篇
  2007年   7篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   1篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有249条查询结果,搜索用时 31 毫秒
1.
Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8–5.3 km s?1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3–30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi‐infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well‐consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s?1) is effectively semi‐infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7–15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well‐consolidated basalt, no crater forms in the exposed subsurface layer.  相似文献   
2.
3.
Minnesota forested soils have evolved without the presence of earthworms since the last glacial retreat. When exotic earthworms arrive, enhanced soil bioturbation often results in dramatic morphological and chemical changes in soils with negative implications for the forests’ sustainability. However, the impacts of earthworm invasion on geochemical processes in soils are not well understood. This study attempts to quantify the role of earthworm invasion in mineral chemical weathering and nutrient dynamics along an earthworm invasion chronosequence in a sugar maple forest in Northern Minnesota. Depth and rates of soil mixing can be tracked with atmospherically derived short lived radioisotopes 210Pb and 137Cs. Their radioactivities increase in the lower A horizon at the expense of the peak activities near the soil surface, which indicate that soil mixing rate and its depth reach have been enhanced by earthworms. Enhanced soil mixing by earthworms is consistent with the ways that the vertical profiles of elemental and mineralogical compositions were affected by earthworm invasion. Biologically cycled Ca and P have peak concentrations near the soil surface prior to earthworm invasion. However, these peak abundances significantly declined in the earthworm invaded soils presumably due to enhanced soil mixing. It is clear that enhanced soil mixing due to earthworms also profoundly altered the vertical distribution of most mineral species within A horizons. Though the mechanisms are not clear yet, earthworm invasion appears to have contributed to net losses of clay mineral species and opal from the A horizons. As much as earthworms vertically relocated minerals and elements, they also intensify the contacts between organic matter and cations as shown in the increased amount of Ca and Fe in organically complexed and in exchangeable pools. With future studies on soil mixing rates and elemental leaching, this study will quantitatively and mechanically address the role of earthworms in geochemical evolution of soils and forests’ nutrient dynamics.  相似文献   
4.
Asymmetric-Flow Field-Flow Fractionation (AsFlFFF) coupled to an inductively coupled plasma-mass spectrometer (ICP-MS) was used to determine whether colloidal As exists in mine tailings from abandoned Au mine sites in Nova Scotia. Using this technique, the chemical composition and the size of the colloidal material was determined. Tailings samples were collected from the sites and leachates were analyzed. The resulting fractograms showed the presence of colloidal As. Arsenic co-elutes with Fe and Al suggesting that the As is associated with colloids containing these elements. The colloidal material present in the samples has a calculated median size of 7 nm. The leachates were also analyzed for totalAs, Fe and Al using ICP-MS. The colloidal fraction was determined to account for approximately 20% of the total dissolved As present in these samples. Dissolved As concentrations at the selected mine sites are very high and the arbitrary cutoff for dissolved still incorporates colloidal material. Therefore. it is important to distinguish between truly dissolved and colloidal As as the speciation will affect the toxicity and mobility of As at these locations.  相似文献   
5.
Here we report uranium and thorium isotopic ratios and elemental concentrations measured in solid reference materials from the USGS (BHVO‐2G, BCR‐2G, NKT‐1G), as well as those from the MPI‐DING series (T1‐G, ATHO‐G). Specifically created for microanalysis, these naturally‐sourced glasses were fused from rock powders. They cover a range of compositions, elemental concentrations and expected isotopic ratios. The U‐Th isotopic ratios of two powdered source materials (BCR‐2, BHVO‐2) were also characterised. These new measurements via multi‐collector thermal ionisation mass spectrometry and multi‐collector inductively coupled plasma‐mass spectrometry can now be used to assess the relative performance of techniques and facilitate comparison of U‐Th data amongst laboratories in the geoscience community for in situ and bulk analyses.  相似文献   
6.
7.
8.
Institutional capacity is an important element for climate change adaptation (CCA) and the development of such capacity is a great challenge in a Least Developed Country like Cambodia where resources are limited. An important first step to increasing capacity is via an understanding of the level of existing capacity; future priorities can then be subsequently identified. This study aimed to assess the capacity of organizations to implement climate change activities in Cambodia in order to provide such a basis for building capacity. Four elements of capacity were investigated in this research: (1) financial resources, (2) cooperation and coordination of stakeholders, (3) availability and quality of information on vulnerability and adaptation to climate change, and (4) the level of understanding of climate change vulnerability and adaptation. The data were collected through semistructured interviews with a wide range of government and non-government informants across a number of sectors. Results of the study showed that informants perceived capacity for CCA to be very constrained, especially in terms of financial resources and cooperation, and addressing these factors was ranked as the highest climate change capacity priority. Institutional capacity constraints were considered to relate more generally to weak governance of CCA. In light of our research findings, the absence of local higher education institutions in CCA activities should be addressed. The support of such institutions would provide an important mechanism to progress both capacity development as well as partnerships and coordination between different types of organizations and relevant sectors.

Policy relevance

Capacity for CCA within Cambodian health and water sectors was perceived to be very constrained across a range of interdependent factors. Increasing funding was ranked as the highest priority for building capacity for CCA; however, governance factors such as ‘improved cooperation’ were also ranked highly. Improving stakeholders' awareness of the availability of adaptation funds and resources, and their responsiveness to funding criteria, is an important implication of our research, as is improving the mobilization of local resources and the private sector. To address the issue of weak cooperation among stakeholders, improving the coordination function of the National Climate Change Committee (NCCC) regarding stakeholder engagement and capacity building is crucial. Ensuring that CCA activities are based on sound information and knowledge from across different disciplines and, importantly, include the perspectives of vulnerable people themselves, ultimately underpins and supports the realization of the above priorities.  相似文献   
9.
10.
Skeletal cadmium-to-calcium (Cd/Ca) ratios in hermatypic stony corals have been used to reconstruct changes in upwelling over time, yet there has not been a systematic evaluation of this tracer’s natural variability within and among coral species, between depths and across environmental conditions. Here, coral skeletal Cd/Ca ratios were measured in multiple colonies of Pavona clavus, Pavona gigantea and Porites lobata reared at two depths (1 and 7 m) during both upwelling and nonupwelling intervals in the Gulf of Panama (Pacific). Overall, skeletal Cd/Ca ratios were significantly higher during upwelling than during nonupwelling, in shallow than in deep corals, and in both species of Pavona than in P. lobata. P. lobata skeletal Cd/Ca ratios were uniformly low compared to those in the other species, with no significant differences between upwelling and nonupwelling values. Among colonies of the same species, skeletal Cd/Ca ratios were always higher in all shallow P. gigantea colonies during upwelling compared to nonupwelling, though the magnitude of the increase varied among colonies. For P. lobata, P. clavus and deep P. gigantea, changes in skeletal Cd/Ca ratios were not consistent among all colonies, with some colonies having lower ratios during upwelling than during nonupwelling. No statistically significant relationships were found between skeletal Cd/Ca ratios and maximum linear skeletal extension, δ13C or δ18O, suggesting that at seasonal resolution the Cd/Ca signal was decoupled from growth rate, coral metabolism, and ocean temperature and salinity, respectively. These results led to the following conclusions, (1) coral skeletal Cd/Ca ratios are independent of skeletal extension, coral metabolism and ambient temperature/salinity, (2) shallow P. gigantea is the most reliable species for paleoupwelling reconstruction and (3) the average Cd/Ca record of several colonies, rather than of a single coral, is needed to reliably reconstruct paleoupwelling events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号