首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  国内免费   1篇
地球物理   2篇
地质学   1篇
海洋学   23篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
1.
Current measurements in the surface layer in Sagami and Suruga Bays showed existence of significant tidal currents which are considered to be mainly due to internal tides (Inaba, 1982; Ohwaki,ea al., 1991). In addition, the prevailing period of the tidal currents is semidiurnal in Sagami Bay, but diurnal in Suruga Bay. To explain this difference in the prevailing, periods, numerical experiments were carried out using a two layer model. The internal tides are generated on the Izu Ridge outside the two bays. The semidiurnal internal tide propagates into Sagami Bay having characteristics of an internal inertia-gravity wave, while it propagates into Suruga Bay having characteristics of either an internal inertia-gravity wave or an internal Kelvin wave. The diurnal internal tide behaves only as an internal Kelvin wave, because the diurnal period is longer than the inertia period. Thus, the diurnal internal tide generated on the Izu Ridge can be propagated into Suruga Bay, while it cannot propagate into the inner region of Sagami Bay, though it is trapped around Oshima Island, which is located at the mouth of Sagami Bay. The difference in the propagation characteristics between the semidiurnal and diurnal internal tides can give a mechanism to explain the difference in the prevailing periods of the internal tides between Sagami and Suruga Bays.  相似文献   
2.
Tidal currents observed in a surface layer overlying deep water in Sagami and Suruga Bays frequently have large amplitude in summer and fall. Numerical experiments show that the current amplitude due to the surface tides is below 1.0 cm sec–1 for the semidiurnal and diurnal constituents in the inner region of the two bays. The observed current amplitudes are larger than the calculated ones due to the surface tides. Therefore, the observed tidal currents are indicated to be due mainly to the internal tides. In addition, the semidiurnal currents dominate the diurnal currents in Sagami Bay, while the opposite occurs in Suruga Bay. These results suggest that the prevailing periods of the internal tides differ between the two bays,i.e., the internal tide has a semidiurnal period in Sagami Bay and a diurnal period in Suruga Bay.  相似文献   
3.
A three-dimensional, multi-level model was used to study the energy dissipation of semidiurnal internal Kelvin waves due to their interaction with bottom topography. A simplified topography consisting of a channel with an additional shallow bay was used to clarify the wave’s scattering process. When the first mode semidiurnal internal wave given at an open boundary arrives at the bay mouth, higher-mode internal waves are generated at a step bottom of the bay mouth. As a result, the energy of the first mode internal Kelvin wave is effectively decayed. The decay rate of the internal Kelvin wave depends on both the width and length of the additional bay. The maximum decay rate was found when a resonance condition occurs the bay, that is, the bay length is equal to a quarter of wave length of the first mode internal wave on the shallow region. The decay rate in the wide bay cases is higher than that in a narrow case, due to a contribution from the scattering due to the Poincare wave that emanates from the corners of the bay head. The decay rate with the additional bay is 1.1–1.8 times that of the case without the additional bay. The decay rate due to the scattering process is found to be of the same order as that of the internal and bottom friction.  相似文献   
4.
A comparison between Japan-equator XBT sections along 150°E in late November 1989 and along 140°E in early December 1991 is made. The warmest surface water above 29°C diminished to the south of 2–4°N and the surface mixed layer noticeably decreased in thickness in the equatorial region in December 1991; besides, the North Equatorial Countercurrent was intensified. This is considered to be a manifestation of changes in the surface layer of the western equatorial Pacific in the mature phase of El Niño.  相似文献   
5.
本文把模糊模式识别的直接方法用于检测日本东海地区地震活动性、体积应变、地下水位、地下水氡含量、地倾斜和潮位中的前兆变化。此方法可消除诸如降雨和气温变化等干扰,使我们能更清晰地识别出地震前兆。此外,还把模糊相似方法和模糊聚类方法应用于识别地震空区及检验地震活动随时间变化的相似性。上述方法在日本其他地区同样有效,即将编入日本气象研究所板内地震预报计划中的计算机系统内。  相似文献   
6.
ADCP, CTD and XBT observations were conducted to investigate the current structure and temperature, salinity and density distributions in the Soya Warm Current (SWC) in August, 1998 and July, 2000. The ADCP observations clearly revealed the SWC along the Hokkaido coast, with a width of 30–35 km and an axis of maximum speed of 1.0 to 1.3 ms−1, located at 20–25 km from the coast. The current speed gradually increased from the coast to a maximum and steeply decreased in the offshore direction. The SWC consisted of both barotropic and baroclinic components, and the existence of the baroclinic component was confirmed by both the density front near the current axis and vertical shear of the alongshore current. The baroclinic component strengthened the barotropic component in the upper layer near the axis of the SWC. The volume transport of the SWC was 1.2–1.3 SV in August, 1998 and about 1.5 SV and July, 2000, respectively. Of the total transport, 13 to 15% was taken up by the baroclinic component. A weak southeastward current was found off the SWC. It had barotropic characteristics, and is surmised to be a part of the East Sakhalin Current.  相似文献   
7.
The vertical mixing process induced by internal tides was investigated by repeated conductivity, temperature, and depth (CTD) measurements and bottom-mounted acoustic Doppler current profiler (ADCP) in Uchiura Bay from July 24 to 25, 2001. Internal tides were observed with a wave height of 40 m and a horizontal current of 0.3 ms−1. Density inversions were found in the CTD data, and the method of Galbraith and Kelley (1996) was applied to the data to identify overturns and to calculate Thorpe scale. Most of the overturns distributed in the region of low Richardson number, so that they were considered to be caused by shear instability associated with the internal tides. Thorpe scale was calculated to be 0.48 m. From the Thorpe scale, the vertical eddy diffusivity due to internal tides in Uchiura Bay was estimated as K ρ ∼ 10−4 m2s−1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
本文是在日本造船振兴财团的经费赞助下在中国渤海地区发展海底地震观测的初步技术报告。本报告主要包括以下内容: (1) 渤海及其邻近地区的地震活动性与地震危险性估计; (2) 渤海地区海底地震观测的条件; (3) 渤海地区海底地震观测仪器与技术的某些初步研究结果; (4) 浅海情况下海底地震观测噪声的模拟实验研究结果。文中研究了该地区的历史与现代地震活动性、长期地震危险性以及发生在华北与日本的大地震之间的关系。还讨论了渤海强震和海啸对渤海及其邻近海域航海的影响问题。在这些研究结果的基础上对在渤海地区开展海底地震观测的必要性进行了解释。本文探讨了在渤海地区进行海底地震观测的某些仪器和技术问题。天津市地震局曾在渤海地区石油平台的油井中作过初步地震观测试验。日本气象厅气象研究所发展的海底地震观测中有关降低噪声与信号传输等方面的新技术与经验可用于渤海地区的海底地震观测。在这些研究的基础上,提出了一个在中国渤海地区发展渤海地震观测的初步设想。指出渤海海底地震观测试验应从观测和研究渤海海底海洋噪声谱开始。为了研究浅海情况下海底地震观测的噪声,本文完成了一项新的模拟试验工作。分别对海面源及海内源产生的噪声进行了实验研究。文中给出了一些重要实验结果。本文所得的初步结果,对发展渤海及邻近地区海底地震观测有一定的参考价值。  相似文献   
9.
10.
The strength of mixing due to turbulence in the Antarctic Slope Front (ASF) region was investigated using CTD (conductivity-temperature-depth profilers) observations and direct measurements of turbulence conducted off Adélie Land, East Antarctica along 140°E from the 12th–14th February, 2005. The strongest horizontal gradient of the ASF was located below 300 m depth near the 1000 m isobath. The turbulent measurements revealed that the energy dissipation rate frequently exceeded 10?8 Wkg?1 on the continental shelf and upper slope regions. Turbulent diffusivities near the shelf break were higher than 10?3 m2s?1. Near the ASF the average turbulent heat flux was 5.7 Wm?2 and 1.1 Wm?2 across the temperature minimum layer to 250 m and from 300 to 600 m, respectively. The distribution of the high dissipation rate was consistently explained by the characteristic curve of the M2 internal wave emanating from the shelf break and continental slope. The water mass observed in the ASF below 300 m in the continental slope comprised Modified Circumpolar Deep Water and low salinity Shelf Water originating from either the upper layer of the Adélie Depression or the Adélie Bank, and produced by boundary mixing near the shelf break.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号