首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   3篇
测绘学   1篇
大气科学   8篇
地球物理   16篇
地质学   10篇
海洋学   7篇
天文学   4篇
自然地理   6篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   6篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1984年   1篇
排序方式: 共有52条查询结果,搜索用时 93 毫秒
1.
Paleosols are recurrent features in alluvial successions and provide information about past sedimentary dynamics and climate change. Through sedimentological analysis on six sediment cores, the mud-dominated succession beneath the medieval ‘Two Towers’ of Bologna was investigated down to 100 m depth. A succession of weakly developed paleosols (Inceptisols) was identified. Four paleosols (P1, P2, P3 and PH) were radiocarbon-dated to 40–10 cal ka bp . Organic matter and CaCO3 determinations indicate low groundwater levels during soil development, which spanned periods < 5 ka. The development and burial of soils, which occurred synchronously in the Bologna region and in other sectors of the Po Plain, are interpreted to reflect climatic and eustatic variations. Climatic oscillations, at the scale of the Bond cycles, controlled soil development and burial during Marine Isotope Stage (MIS) 3 (P1 and P2). Rapid sea-level oscillations probably induced soil development at the MIS 3/2 transition (P3) and favored burial of PH after 10 ka bp . Weakly developed paleosols in alluvial successions can provide clues to millennial-scale climatic and environmental variations. In particular, the paleosol-bearing succession of the Po Plain represents an unprecedent record of environmental changes across the Late Pleistocene (MIS 3 and 2) in the Mediterranean region.  相似文献   
2.
One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.  相似文献   
3.
Acta Geotechnica - Plasticity of clays makes Deep Soil Mixing (DSM)&nbsp;problematic due to the tendency of the material to congest the rotating blades, reduce mixing efficiency and remain...  相似文献   
4.
5.
The sulphate glacio-chemical profiles constitute a reliable proxy marker for reconstruction of past volcanic history, assuming a reliable method to distinguish sulphate spikes and to evaluate the flux of individual events is set up. The resulting volcanic event profile is used to reconstruct past event frequencies, and to investigate possible links between volcanism and climatic changes. Volcanic event signatures are useful also in comparing time scales from ice cores drilled at different locations. In this paper, a new method to pick out volcanic signals is proposed. It improves on methods based on the calculation of a threshold using a general mean value plus a multiple of the standard deviation by adding: (1) quantification of nonvolcanic sulphate contributions; (2) sulphate fluxes, instead of concentrations, accounting for accumulation rate changes; (3) data treatment using a log-normal statistic, instead of a Gaussian-type distribution, to take into account the real sulphate distribution; (4) a smoothed curve (weighted fitting) to better understand the residual variability of the sulphate background.This method is used to detect volcanic events throughout the 45 ky time span of the EDC96 ice core, drilled at Dome C on the East Antarctic plateau. A total of 283 volcanic signatures are recovered, with a mean of 6.3 events per millennium. The temporal event frequencies indicate that the last 2000 years were probably characterized by the highest volcanic activity in the period covered by the core and that there is no clear link between number of events recorded and climatic changes.  相似文献   
6.
7.
An accurate structure refinement, using single-crystal X-ray diffraction data, on natural α- and β-dimorphites collected at Solfatara di Pozzuoli, in the Phlegraean Fields, near Naples and at Vesuvius (Italy) is reported. Theoretical calculations at various levels of sophistication have been used to calculate molecular vibrational frequencies and gas-phase specific heats, to analyze the crystal packing, and to estimate lattice energies of both phases. All computational methods contribute to demonstrate that the β-phase is the thermodynamically stable one at room temperature.  相似文献   
8.
As the global climate warms due to increasing greenhouse gases, the regional climate of the Gulf of Mexico and Caribbean region will also change. This study presents the latest estimates of the expected changes in temperature, precipitation, tropical cyclone activity, and sea level. Changes in temperature and precipitation are derived from climate model simulations produced for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), by comparing projections for the mid- and late-21st century to the late 20th century and assuming a “middle-of-the-road” scenario for future greenhouse gas emissions. Regional simulations from the North America Regional Climate Change Program (NARCCAP) are used to corroborate the IPCC AR4 rainfall projections over the US portion of the domain. Changes in tropical cyclones and sea level are more uncertain, and our understanding of these variables has changed more since IPCC AR4 than in the case of temperature and precipitation. For these quantities, the current state of knowledge is described based on the recent peer-reviewed literature.  相似文献   
9.
The TRMM Precipitation Radar is used to construct a high resolution (0.05°?×?0.05°) climatology of rainfall over the latitude band extending to about 36° North and South. This study describes climatological patterns of rainfall frequency and intensity at high spatial resolution, with special focus on the seasonal and diurnal cycles in the frequency of rainfall events. We use this Tropics-wide dataset to highlight small-scale precipitation features that are too fine to be captured by the most widely used satellite-based rainfall datasets. The results shed light on the roles of changes in the wind direction, the land-sea thermal contrast, small-scale variations in sea surface temperature, and orography in shaping the seasonal and diurnal cycles of rainfall. In some regions of the tropics, diurnally locked local circulations are largely responsible for sharp gradients in the spatial distribution of seasonal mean precipitation. In other regions, we show that climatological rainfall frequency changes very sharply at coastlines, even though rainfall in these regions is expected to be controlled by relatively large scale weather systems.  相似文献   
10.
A global perspective on African climate   总被引:4,自引:1,他引:3  
We describe the global climate system context in which to interpret African environmental change to support planning and implementation of policymaking action at national, regional and continental scales, and to inform the debate between proponents of mitigation v. adaptation strategies in the face of climate change. We review recent advances and current challenges in African climate research and exploit our physical understanding of variability and trends to shape our outlook on future climate change. We classify the various mechanisms that have been proposed as relevant for understanding variations in African rainfall, emphasizing a “tropospheric stabilization” mechanism that is of importance on interannual time scales as well as for the future response to warming oceans. Two patterns stand out in our analysis of twentieth century rainfall variability: a drying of the monsoon regions, related to warming of the tropical oceans, and variability related to the El Niño–Southern Oscillation. The latest generation of climate models partly captures this recent continent-wide drying trend, attributing it to the combination of anthropogenic emissions of aerosols and greenhouse gases, the relative contribution of which is difficult to quantify with the existing model archive. The same climate models fail to reach a robust agreement regarding the twenty-first century outlook for African rainfall, in a future with increasing greenhouse gases and decreasing aerosol loadings. Such uncertainty underscores current limitations in our understanding of the global climate system that it is necessary to overcome if science is to support Africa in meeting its development goals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号