首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
大气科学   1篇
地球物理   3篇
地质学   1篇
海洋学   18篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1994年   1篇
  1992年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
Near-surface upward irradiances within each band of the MSS (multi spectral scanner) of LANDSAT, were computed from observed spectral upward irradiances measured just beneath the sea surface. Computation of these irradiances is a useful first step in the analysis of remotely-sensed radiance because the data are not affected by the effects of the atmosphere and sea surface. The computed irradianceE in LANDSAT bands 4, 5 and 6 was normalized by forming ratios,i.e., R 45=E4/E5, R46=E4/E6, andR 56=E5/E6, and then the relationship between these ratios and chlorophylla plus phaeopigment concentration (C) observed simultaneously at 59 stations was examined by linear regression analysis. The observedC ranged over nearly three orders of magnitude, and there is a close to linear relationship between log10-R 45 and log10 C. This suggests that it may be possible to evaluateC from LANDSAT data, if an appropriate atmospheric correction is made. The relationship between suspended solids determined at 35 stations and the same ratios of upward irradiance is also presented and discussed.  相似文献   
3.
We present calibration and validation results of the OCTS’s ocean color version-3 product, which mainly consists of the chlorophyll-a concentration (Chl-a) and the normalized water-leaving radiance (nLw). First, OCTS was calibrated for the inter-detector sensitivity difference, offset, and absolute sensitivity using external calibration source. It was also vicariously calibrated using in-situ measurements for water (Chl-a andnLw) and atmosphere (optical thickness), which were acquired synchronously with OCTS under cloud-free conditions. Second, the product was validated using selected 17 in-situ Chl-a and 11 in-situnLw measurements. We confirmed that Chl-a was estimated with an accuracy of 68% for Chl-a less than 2 mg/m3, andnLw from 94% (band 2) to 128% (band 4). Geometric accuracy was improved to 1.3 km. Stripes were significantly reduced by modifying the detector normalization factor as a function of input radiance.  相似文献   
4.
The variety in shape and magnitude of thein vivo chlorophyll-specific absorption spectra of phytoplankton was investigated in relation to differences in pigment composition off Sanriku, northwestern North Pacific. Site-to-site variations of the absorption coefficients,a ph * (λ), and pigment composition were clearly observed. At warm-streamer stations, higher values ofa ph * (440) anda ph * (650) were found with relatively high concentrations of chlorophyllb (a green algae marker). At stations located in the Oyashio water (cold streamer),a ph * (440) values were lower and fucoxanthin (a diatom marker) concentrations were higher, compared to the other stations. The peak in the absorption spectra at the Oyashio stations was shifted toward shorter wavelengths, which was probably due to the presence of phaeopigments. In a Kuroshio warm-core ring, the magnitude ofa ph * (440) was in between those at the warm-streamer and Oyashio stations, and the diagnostic pigment was peridinin (a dinoflagellate marker). These findings indicated that major differences in phytoplankton absorption spectra of each water mass were a result of differences in the phytoplankton pigment composition of each water mass, which was probably related to the phytoplankton community.  相似文献   
5.
6.
We began continuous monitoring of H2 concentration in soil along the San Andreas and Calaveras faults in central California in December 1980, using small H2/O2 fuel-cell sensors. Ten monitoring stations deployed to date have shown that anomalous H2 emissions take place occasionally in addition to diurnal changes. Among the ten sites, the Cienega Winery site has produced data that are characterized by very small diurnal changes, a stable baseline, and remarkably distinct spike-like H2 anomalies since its installation in July 1982. A major peak appeared on 1–10 November 1982, and another on 3 April 1983, and a medium peak on 1 November 1983. The occurrences of these peaks coincided with periods of very low seismicity within a radius of 50 km from the site. In order to methodically assess how these peaks are related to earthquakes, three H2 degassing models were examined. A plausible correlational pattern was obtained by using a model that (1) adopts a hemicircular spreading pattern of H2 along an incipient fracture plane from the hypocenter of an earthquake, (2) relies on the FeO–H2O reaction for H2 generation, and (3) relates the accumulated amount of H2 to the mass of serpentinization of underlying ophiolitic rocks; the mass was tentatively assumed to be proportional to the seismic energy of the earthquake.  相似文献   
7.
Both historic and currently operational chlorophyll algorithms of the satellite-borne ocean color sensors, such as SeaWiFS, were evaluated for in situ spectral radiation and chlorophyll data in some Case I waters, including the waters in the Indian Ocean sector of the Southern Ocean. Chlorophyll a concentration of the data set (n = 73) ranged from 0.04 to 1.01 mg m–3. The algorithms had higher accuracy for the low- and mid-latitude waters (RMSE: 0.163–0.253), specifically the most recently developed algorithms of OCTS and Sea WiFS showed 0.163 and 0.170 of Root Mean Square Errors, respectively. However, these algorithms had large errors (0.422–0.621) for the Southern Ocean data set and underestimated the surface chlorophyll by more than a factor of 2.6. The absorption coefficients in the blue spectral region retrieved from remote sensing reflectance varied in a nonlinear manner with chlorophyll a concentration, and the value in the Southern Ocean was significantly lower than that in the low- and mid-latitude waters for each chlorophyll a concentration. The underestimation of chlorophyll a concentration in the Southern Ocean with these algorithms was caused by the lower specific absorption coefficient in the region compared with the low- and mid-latitude waters under the same chlorophyll a concentration.  相似文献   
8.
An algorithm is presented to retrieve the concentrations of chlorophyll a, suspended pariclulate matter and yellow substance from normalized water-leaving radiances of the Ocean Color and Temperature Sensor (OCTS) of the Advanced Earth Observing Satellite (ADEOS). It is based on a neural network (NN) algorithm, which is used for the rapid inversion of a radiative transfer procedure with the goal of retrieving not only the concentrations of chlorophyll a but also the two other components that determine the water-leaving radiance spectrum. The NN algorithm was tested using the NASA's SeaBAM (SeaWiFS Bio-Optical Mini-Workshop) test data set and applied to ADEOS/OCTS data of the Northwest Pacific in the region off Sanriku, Japan. The root-mean-square error between chlorophyll a concentrations derived from the SeaBAM reflectance data and the chlorophyll a measurements is 0.62. The retrieved chlorophyll a concentrations of the OCTS data were compared with the corresponding distribution obtained by the standard OCTS algorithm. The concentrations and distribution patterns from both algorithms match for open ocean areas. Since there are no standard OCTS products available for yellow substance and suspended matter and no in situ measurements available for validation, the result of the retrieval by the NN for these two variables could only be assessed by a general knowledge of their concentrations and distribution patterns. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
By using the two-flow optical model, the variation in the irradiance reflectance of the ocean just below the surface has been calculated for varying water optical properties, for the interpretation of remotely-sensed ocean color data. The input variables used in our model are the concentration of phytoplankton (chlorophyll-a), the absorption coeffiicient of yellow substance, the particle scattering coefficient, the ratio of the back-scattering coefficient to the total scattering coefficient of particles, and the ratio of the absorption to scattering coefficients for particles.The irradiance reflectance increases monotonically with the ratio of the back-scattering coefficient to the total scattering coefficient. Spectral changes occur in the irradiance reflectance for increases in chlorophyll-a concentration and yellow substance as well as the ratio of the absorption to scattering coefficients.Because slightly different mathematical expressions have been derived by other investigators using the two-flow model, an evaluation of the resulting calculation differences is presented and discussed.  相似文献   
10.
A method for evaluating the radiance due to sky light reflected by the sea surface and radiance emerging from the sea is described. The calculation is made as a function of the sun altitude, sky condition and sea state for varying optical properties of sea water. As a result of the contribution of reflected sky light, the shape of the spectral distribution for radiance just below the surface is considerably distorted above the surface, especially when chlorophyll concentrations are high. Special attention is paid to the ratio of radiance emerging from the sea to total upwelling radiance at the wavelength of 670 nrn. The variation in the ratio with wind-speed is small and the ratio decreases with increase in the atomospheric turbidity factor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号