首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2442篇
  免费   122篇
  国内免费   41篇
测绘学   48篇
大气科学   193篇
地球物理   608篇
地质学   878篇
海洋学   212篇
天文学   362篇
综合类   19篇
自然地理   285篇
  2023年   11篇
  2021年   36篇
  2020年   48篇
  2019年   40篇
  2018年   73篇
  2017年   50篇
  2016年   71篇
  2015年   87篇
  2014年   80篇
  2013年   153篇
  2012年   113篇
  2011年   151篇
  2010年   112篇
  2009年   141篇
  2008年   136篇
  2007年   142篇
  2006年   113篇
  2005年   96篇
  2004年   84篇
  2003年   67篇
  2002年   69篇
  2001年   41篇
  2000年   42篇
  1999年   34篇
  1998年   35篇
  1997年   32篇
  1996年   38篇
  1995年   24篇
  1994年   31篇
  1993年   26篇
  1992年   25篇
  1991年   22篇
  1990年   13篇
  1989年   27篇
  1988年   21篇
  1987年   28篇
  1986年   24篇
  1985年   31篇
  1984年   33篇
  1983年   27篇
  1982年   23篇
  1981年   21篇
  1980年   25篇
  1979年   17篇
  1978年   16篇
  1977年   12篇
  1976年   11篇
  1975年   13篇
  1974年   7篇
  1973年   12篇
排序方式: 共有2605条查询结果,搜索用时 15 毫秒
1.
Based on the latest oceanic surface drifter dataset from the global drifter program during 2000–2019, this study investigated the global variation of relative frequency shift(RFS), near-inertial energy(NIE) and inverse excess bandwidth(IEB) of near-inertial motions, and analyzed their relations with oceanic mesoscale dynamics, relative vorticity and strain. Compared with previous works, we have some new findings in this study:(1) the RFS was high with negative values in some regions in which we found a significant blue shift of the RFS in the equatorward of 30°N(S) and from 50°N to 60°N in the Pacific, and a red shift in the western boundary currents and their extension regions, the North Atlantic and the Antarctic Circumpolar Current regions;(2) more peak values of the NIE were found in global regions like the South Indian Ocean, the Luzon Strait and some areas of the South Ocean;(3) the global distribution of the IEB were characterized by clear zonal bands and affected by vorticity and wind field;(4)the RFS was elevated as the absolute value of the gradient of vorticity increased, the IEB did not depend on the gradient of vorticity, and the eddy kinetic energy(EKE) weakened with the decrease of the absolute value of RFS;(5) the NIE decreased with increasing absolute value of the relative vorticity and the gradient of vorticity, but it increased with increasing strain and EKE when EKE was larger than 0.003 2 m~2/s~2.  相似文献   
2.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
3.
4.
Gabda  Darmesah  Tawn  Jonathan  Brown  Simon 《Natural Hazards》2019,98(3):1135-1154
Natural Hazards - The aim of this paper is to set out a strategy for improving the inference for statistical models for the distribution of annual maxima observed temperature data, with a...  相似文献   
5.
Increasing concentrations of atmospheric carbon dioxide are causing oceanic pH to decline worldwide, a phenomenon termed ocean acidification. Mounting experimental evidence indicates that near-future levels of CO2 will affect calcareous invertebrates such as corals, molluscs and gastropods, by reducing their scope for calcification. Despite extensive research into ocean acidification in recent years, the effects on non-calcifying anthozoans, such as sea anemones, remain little explored. In Western Europe, intertidal anemones such as Actinia equina are abundant, lower trophic-level organisms that function as important ecosystem engineers. Changes to behaviours of these simple predators could have implications for intertidal assemblages. This investigation identified the effects of reduced seawater pH on feeding and contest behaviour by A. equina. Video footage was recorded for A. equina feeding at current-day seawater (pH 8.1), and the least (pH 7.9) and most (pH 7.6) severe end-of-century predictions. Footage was also taken of contests over ownership of space between anemones exposed to reduced pH and those that were not. No statistically significant differences were identified in feeding duration or various aspects of contest behaviour including initiating, winning, inflating acrorhagi, inflicting acrorhagial peels and contest duration. Multivariate analyses showed no effect of pH on a combination of these variables. This provides contrast with other studies where anemones with symbiotic algae thrive in areas of natural increased acidity. Thus, novel experiments using intraspecific contests and resource-holding potential may prove an effective approach to understand sub-lethal consequences of ocean acidification for A. equina, other sea anemones and more broadly for marine ecosystems.  相似文献   
6.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
7.
Recent tsunamis affecting the West Coast of the USA have resulted in significant damage to ports and harbors, as well as to recreational and commercial vessels attempting to escape the tsunami. With the completion of tsunami inundation simulations for a distant tsunami originating from the Aleutian Islands and a locally generated tsunami on the Cascadia subduction zone (CSZ), the State of Oregon is now able to provide guidance on the magnitudes and directions of the simulated currents for the Oregon coast and shelf region. Our analyses indicate that first wave arrivals for an Aleutian Island event would take place on the north coast,?~?3 h 40 min after the start of the earthquake,?~?20 min later on the southern Oregon coast. The simulations demonstrated significant along-coast variability in both the tsunamis water levels and currents, caused by localized bathymetric effects (e.g., submarine banks and reefs). A locally generated CSZ event would reach the open coast within 7–13 min; maximum inundation occurs at?~?30–40 min. As the tsunami current velocities increase, the potential for damage in ports and harbors correspondingly increases, while also affecting a vessels ability to maintain control out on the ocean. Scientific consensus suggests that tsunami currents?<?1.54 m/s are unlikely to impact maritime safety in ports and harbors. No such guidance is available for boats operating on the ocean, though studies undertaken in Japan suggest that velocities in the region of 1–2 m/s may be damaging to boats. In addition to the effects of currents, there is the added potential for wave amplification of locally generated wind waves interacting with opposing tsunami currents in the offshore. Our analyses explore potential wave amplification effects for a range of generic sea states, ultimately producing a nomogram of wave amplification for a range of wave and opposing current conditions. These data will be useful for US Coast Guard and Port authorities as they evaluate maritime tsunami evacuation options for the Oregon coast. Finally, we identify three regions of hazard (high, moderate, and low) across the Oregon shelf, which can be used to help guide final designation of tsunami maritime evacuation zones for the coast.  相似文献   
8.

Analysing pre-earthquake signals using satellite technology are getting importance among the scientific community, since round-the-clock survey for the wider region is possible compared to ground-based monitoring techniques. Several scientists are involved in various satellites and ground-based technologies to decode the complex physical mechanism of the earthquake process since 1980. They involved in measuring anomalous variations using space-based methodologies like EM signals, SAR interferometry, GPS for ionospheric sounding, satellite gravimetry, atmospheric sounding, Outgoing Longwave Radiation (OLR), radon gas and seismo-tectonic clouds. In this paper, the authors have considered surface latent heat flux (SLHF) and OLR satellite data for detailed analysis of earthquakes took place during the year 2014 in Sumatra and Nicobar Is regions. At the surface and atmospheric interface, the anomalous variations in SLHF were observed prior to the occurrence of the earthquake. Similarly, anomalous variations in OLR have been observed 3–30 days prior to the big earthquakes and it is measured above the cloud level. From the analysis, the author has found that variations in the SLHF and OLR flux can be utilized as efficient tools to identify the impending big earthquakes. SLHF and OLR variation level can give us a clue about the probable magnitude of earthquakes and also about earthquake preparation zones. Hence, by correlating the above-mentioned parameters, it is potential to key out the impending earthquakes with reasonable accuracy.

  相似文献   
9.
After decades of pressure from vulnerable developing countries, the Warsaw International Mechanism on Loss and Damage (the WIM) was established at the nineteenth Conference of the Parties (COP 19) in 2013 to address costly damages from climate change. However, little progress has been made towards establishing a mechanism to fund loss and damage. The WIM's Executive Committee issued its first two-year workplan the following year at COP 20 which offered, among other things, a range of approaches to financing loss and damage programmes, which we review here. We provide brief overviews of each mechanism proposed by the WIM ExCom, describe their current applications, their statuses under the United Nations Framework Convention on Climate Change (UNFCCC), some of their advantages and disadvantages, and their current or potential application to loss and damage. We find that several of these mechanisms may be useful in supporting loss and damage programmes, but identify some key gaps. First, most of the mechanisms identified by the WIM ExCom are insurance schemes subsidized with voluntary contributions, which may not be adequate or reliable over time. Second, none were devised to apply to slow-onset events, or to non-economic losses and damages. That is, if harms are inflicted on parts of a society or its ecosystems that have no price, or if they occur gradually, they would probably not be covered by these mechanisms. Finally, the lack of a dedicated and adequate flow of finance to address the real loss and damage being experienced by vulnerable nations will require the use of innovative financial tools beyond those mentioned in the WIM ExCom workplan.

Key policy insights

  • Despite a full article of the 2015 Paris Agreement devoted to loss and damage, there is little international agreement on the scope of loss and damage programmes, and especially how they would be funded and by whom.

  • Most of the loss and damage funding mechanisms identified by the WIM ExCom are insurance schemes subsidized with voluntary contributions, which may burden the most vulnerable countries and may not be reliable over time.

  • None of the mechanisms were devised to apply to slow-onset events, or to non-economic losses and damages.

  相似文献   
10.
Map projections are an essential component of coordinate systems used in applications such as surveying, topographic mapping, and engineering, and care needs to be taken to select ones that minimize distortion for each case. This article explores the selection process for near-linear features on the surface of the Earth and derives limits for the extent of a project that can be projected within specified distortion tolerances. It is then demonstrated that a multifaceted set of projections of the Earth may be used to extend this concept to the mapping of features such as highways and railways that are quasi-linear but do not exactly follow a standard geometrical line (a great circle or a small circle) on the surface of the Earth. A continuous, conformal coordinate system may be derived in such situations, extending to indefinite length and applicable over a swath of several kilometers width, but it cannot be extended to cover situations with extensive variations in height. Instead, the Snake Projection is analyzed, and it is shown that this can be used to develop continuous (non-zonal) projected coordinate systems for major engineering projects extending for hundreds of kilometers and having extensive height ranges. Examples are shown of the application to railway projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号