首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
测绘学   2篇
大气科学   4篇
地球物理   22篇
地质学   9篇
海洋学   5篇
天文学   1篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1982年   1篇
  1974年   1篇
排序方式: 共有46条查询结果,搜索用时 31 毫秒
1.
Model performance evaluation for real-time flood forecasting has been conducted using various criteria. Although the coefficient of efficiency (CE) is most widely used, we demonstrate that a model achieving good model efficiency may actually be inferior to the naïve (or persistence) forecasting, if the flow series has a high lag-1 autocorrelation coefficient. We derived sample-dependent and AR model-dependent asymptotic relationships between the coefficient of efficiency and the coefficient of persistence (CP) which form the basis of a proposed CECP coupled model performance evaluation criterion. Considering the flow persistence and the model simplicity, the AR(2) model is suggested to be the benchmark model for performance evaluation of real-time flood forecasting models. We emphasize that performance evaluation of flood forecasting models using the proposed CECP coupled criterion should be carried out with respect to individual flood events. A single CE or CP value derived from a multi-event artifactual series by no means provides a multi-event overall evaluation and may actually disguise the real capability of the proposed model.  相似文献   
2.
The age of past lava flows is crucial information for evaluating the hazards and risks posed by effusive volcanoes, but traditional dating methods are expensive and time‐consuming. This study proposes an alternative statistical dating method based on remote sensing observations of tropical volcanoes by exploiting the relationship between lava flow age and vegetation cover. First, the factors controlling vegetation density on lava flows, represented by the normalized difference vegetation index (NDVI), were investigated. These factors were then integrated into pixel‐based multi‐variable regression models of lava flow age to derive lava flow age maps. The method was tested at a pixel scale on three tropical African volcanoes with considerable recent effusive activity: Nyamuragira (Democratic Republic of Congo), Mt Cameroon (Cameroon) and Karthala (the Comoros). Due to different climatic and topographic conditions, the parameters of the spatial modeling are volcano‐specific. Validation suggests that the obtained statistical models are robust and can thus be applied for estimating the age of unmodified undated lava flow surfaces for these volcanoes. When the models are applied to fully vegetated lava flows, the results should be interpreted with caution due to the saturation of NDVI. In order to improve the accuracy of the models, when available, spatial data on temperature and precipitation should be included to directly represent climatic variation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
3.
Numerical study of baroclinic tides in Luzon Strait   总被引:6,自引:1,他引:5  
The spatial and temporal variations of baroclinic tides in the Luzon Strait (LS) are investigated using a three-dimensional tide model driven by four principal constituents, O1, K1, M2 and S2, individually or together with seasonal mean summer or winter stratifications as the initial field. Barotropic tides propagate predominantly westward from the Pacific Ocean, impinge on two prominent north-south running submarine ridges in LS, and generate strong baroclinic tides propagating into both the South China Sea (SCS) and the Pacific Ocean. Strong baroclinic tides, ∼19 GW for diurnal tides and ∼11 GW for semidiurnal tides, are excited on both the east ridge (70%) and the west ridge (30%). The barotropic to baroclinic energy conversion rate reaches 30% for diurnal tides and ∼20% for semidiurnal tides. Diurnal (O1 and K1) and semidiurnal (M2) baroclinic tides have a comparable depth-integrated energy flux 10–20 kW m−1 emanating from the LS into the SCS and the Pacific basin. The spring-neap averaged, meridionally integrated baroclinic tidal energy flux is ∼7 GW into the SCS and ∼6 GW into the Pacific Ocean, representing one of the strongest baroclinic tidal energy flux regimes in the World Ocean. About 18 GW of baroclinic tidal energy, ∼50% of that generated in the LS, is lost locally, which is more than five times that estimated in the vicinity of the Hawaiian ridge. The strong westward-propagating semidiurnal baroclinic tidal energy flux is likely the energy source for the large-amplitude nonlinear internal waves found in the SCS. The baroclinic tidal energy generation, energy fluxes, and energy dissipation rates in the spring tide are about five times those in the neap tide; while there is no significant seasonal variation of energetics, but the propagation speed of baroclinic tide is about 10% faster in summer than in winter. Within the LS, the average turbulence kinetic energy dissipation rate is O(10−7) W kg− 1 and the turbulence diffusivity is O(10−3) m2s−1, a factor of 100 greater than those in the typical open ocean. This strong turbulence mixing induced by the baroclinic tidal energy dissipation exists in the main path of the Kuroshio and is important in mixing the Pacific Ocean, Kuroshio, and the SCS waters.  相似文献   
4.
We consider the inverse problem of permeability estimation for two-phase porous-media flow. The novel approach is based on regularization by zonation, where the geometry and size of the regions are chosen adaptively during the optimization procedure. To achieve this, we have utilized level-set functions to represent the permeability. The available data are sparsely distributed in space; hence, it is reasonable to confine the estimation to coarse-scale structures. The level-set approach is able to alter the boundaries between regions of different permeability without strict restrictions on their shape; however, when the data are sparse, a reasonable initial guess for the permeability is required. For this task, we use adaptive multiscale permeability estimation, which has the potential of identifying main permeability variations. These are described by a piecewise constant function, where the constant values are attained on rectangular zones. In the current work, we develop a level-set corrector strategy, assuming adaptive multiscale permeability estimation as a predictor.  相似文献   
5.
6.
The northward flow of warm and saline Atlantic Water through the eastern Nordic Seas sustains a spring-bloom ecosystem that hosts some of the world’s largest commercial fish stocks. Abrupt climatic changes, or changes beyond species-specific thresholds, may have severe effects on species abundance and distribution. Here, we utilize a numerical ocean model hindcast to explore the similarities and differences between large-scale anomalies, such as great salinity anomalies, and along-shelf hydrographic anomalies of regional origin, which represent abrupt changes at subannual time scales. The large-scale anomalies enter the Nordic Seas to the south and propagate northward at a speed one order of magnitude less than the Atlantic Water current speed. On the contrary, wind-generated along-shelf anomalies appear simultaneously along the Norwegian continental shelf and propagate northward at speeds associated with topographically trapped Kelvin waves. This process involves changes in the vertical extent of the Atlantic Water along the continental slope. Such a dynamic oceanic response both affects thermal habitats and has the potential to ventilate shelf waters by modifying the cross-shelf transport of nutrients and key prey items for early stages of fish.  相似文献   
7.
We consider identification of absolute permeability (hydraulic conductivity) based on time series of pressure data in sparsely distributed wells for two-phase porous-media flow. For this problem, it is impossible to recover all details of the parameter function. On the other hand, a coarser, approximate recovery may be sufficient for many applications. We propose a novel solution approach, based on reparametrization, for such approximate identification of the parameter function. We use a nonlinear, composite representation, which is detached from the computational grid, allowing for a flexible representation of the parameter function at many resolution levels. This is utilized in a sequential multi-level estimation of the parameter function, starting at a coarse resolution, which is then gradually refined. The composite representation is designed to allow for smooth as well as sharp transitions between regions of nearly constant parameter value. Moreover, it facilitates the estimation also of the structure and smoothness of the parameter function itself. As a limiting case, the chosen representation is reduced to a zonation with implicit representation of the interior boundaries that is equivalent to a level-set representation. A motivation for the selected representation and the multi-level estimation is presented in terms of an analysis of sensitivity and nonlinearity. Numerical examples demonstrate identification of coarse-scale features of reference permeability distributions with varying degree of smoothness. Comparisons show how the multi-level strategy stabilize the identification and avoid local minima of the objective function compared to a single-level strategy.  相似文献   
8.
根据欧亚大陆及西太平洋地区102个数字化台站记录的近万次地震事件的长周期垂直向瑞雷波资料,利用时频分析方法测量并筛选后共得到11213条质量较高的基阶瑞雷波群速度频散资料.纯路径频散的反演中同时计算方位各向异性,反演获得了欧亚大陆及西太平洋边缘海地区(10°E—150°E,10°S—80°N)8—200s共28个周期的瑞雷波群速度及各向异性空间分布图象.瑞雷波高分辨率层析成像表明,30—60s周期,以青藏高原为中心呈极低速分布;100—120s周期,速度差异幅度较大,在东亚东部及西太平洋边缘海,自北向南显示出一条宽2500—4000km,长约8000km的巨型低速异常带.相对海洋来说,欧亚大陆各向异性强度较弱且快波方向较复杂.由于受到印度板块与欧亚板块的碰撞,中国大陆西部的各向异性强度明显大于东部.  相似文献   
9.
DESIGN OF SLIT DAMS FOR CONTROLLING STONY DEBRIS FLOWS   总被引:3,自引:0,他引:3  
1 INTRODUCTION Stony debris flows are natural, highly concentrated water-sediment mixture, which forms wherever the simultaneous availability of water, debris material and an adequate slope, steeper than o10 are satisfied (Gregoretti, 2000). In mountainous regions of Taiwan, due to vast development and utilization of hills, stony debris flows are important from the point of disaster prevention, since they occur frequently and often bring about heavy loss of lives and properties. Therefo…  相似文献   
10.
Weather variation and climate fluctuations are the main sources of ecosystem variability in remote mountain lakes. Here we describe the main patterns of seasonal variability in the ecosystems of nine lakes in Europe, and discuss the implications for recording climatic features in their sediments. Despite the diversity in latitude and size, the lakes showed a number of common features. They were ice-covered between 5–9 months, and all but one were dimictic. This particular lake was long and shallow, and wind action episodically mixed the water column throughout the ice-free period. All lakes showed characteristic oxygen depletion during the ice-covered-period, which was greater in the most productive lakes. Two types of lakes were distinguished according to the number of production peaks during the ice-free season. Lakes with longer summer stratification tended to have two productive periods: one at the onset of stratification, and the other during the autumn overturn. Lakes with shorter stratification had a single peak during the ice-free period. All lakes presented deep chlorophyll maxima during summer stratification, and subsurface chlorophyll maxima beneath the ice. Phosphorus limitation was common to all lakes, since nitrogen compounds were significantly more abundant than the requirements for the primary production observed. The major chemical components present in the lakes showed a short but extreme dilution during thawing. Certain lake features may favour the recording of particular climatic fluctuations, for instance: lakes with two distinct productive periods, climatic fluctuations in spring or autumn (e.g., through chrysophycean cysts); lakes with higher oxygen consumption, climatic factors affecting the duration of the ice-cover (e.g., through low-oxygen tolerant chironomids); lakes with higher water retention time; changes in atmospheric deposition (e.g., through carbon or pigment burial); lakes with longer stratification, air temperature changes during summer and autumn (e.g., through all epilimnetic species).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号