首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   6篇
  国内免费   3篇
大气科学   3篇
地球物理   26篇
地质学   31篇
海洋学   17篇
天文学   21篇
综合类   1篇
自然地理   3篇
  2021年   4篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   2篇
  2012年   1篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   10篇
  2003年   3篇
  2002年   1篇
  2001年   8篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1972年   2篇
  1970年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
A method of structural damage identification using harmonic excitation force is presented. It considers the effects of both measurement and modelling errors in the baseline finite element model. Damage that accompanies changes in structural parameters can be estimated for a damaged structure from the change between measured vibration responses and ones calculated from the analytical model of the intact structure. In practice, modelling errors exist in the analytical model due to material and geometric uncertainties and a reduction in the degrees of freedom as well as measurement errors, making identification difficult. To surmount these problems, bootstrap hypothesis testing, which enables statistical judgment without information about these errors, was introduced. The method was validated by numerical simulation using a three‐dimensional frame structure and real vibration data for a three‐storey steel frame structure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
2.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   
3.
4.
5.
6.
Abstract. Rare earth, major and trace element geochemistry is reported for the Kunimiyama stratiform ferromanganese deposit in the Northern Chichibu Belt, central Shikoku, Japan. The deposit immediately overlies greenstones of mid-ocean ridge basalt (MORB) origin and underlies red chert. The ferromanganese ores exhibit remarkable enrichments in Fe, Mn, P, V, Co, Ni, Zn, Y and rare earth elements (excepting Ce) relative to continental crustal abundance. These enriched elements/ Fe ratios and Post-Archean Average Australian Shale-normalized REE patterns of the ferromanganese ores are generally analogous to those of modern hydrothermal ferromanganese plume fall-out precipitates deposited on MOR flanks. However in more detail, Mn and Ti enrichments in the ferromanganese ores are more striking than the modern counterpart, suggesting a significant contribution of hydrogenetic component in the Kunimiyama ores. Our results are consistent with the interpretation that the Kunimiyama ores were umber deposits that primarily formed by hydrothermal plume fall-out precipitation in the Panthalassa Ocean during the Early Permian and then accreted onto the proto-Japanese island arc during the Middle Jurassic. The presence of strong negative Ce anomaly in the Kunimiyama ores may indicate that the Early Permian Panthalassa seawater had a more striking negative Ce anomaly due to a more oxidizing oceanic condition than today.  相似文献   
7.
Single crystals of akermanite (Ca1–x Sr x )2Co-Si2O7 solid solution were grown in nitrogen by the floating zone method using a lamp-image furnace. The grown crystals were 6 mm in diameter by 50 mm in length. Microprobe analyses indicate uniform strontium content x except in the initially crystallized part. Synthetic crystals with x from 0.0 to 0.3 give, at room temperature, satellite reflections and circular diffuse scatterings in the electron diffraction pattern, which are related to an incommensurate phase and microdomains, respectively. With increasing Sr content the wavelength of a modulation increases and the intensity of satellites decreases, but the intensity of circular diffuse scattering increases up to x=0.15 and then decreases until eventually the satellites and the circular diffuse scatterings disappear at x = 0.3. The circular diffuse scattering is explained by the cluster model for the transition state, proposed by De Ridder et al. (1976).  相似文献   
8.
Sixteen alluvial and terrace soils from Japan and Thailand were separated into six fractions ; an amorphous sesquioxide and combined organic matter fraction, crystalline sesquioxides, clay, silt, fine sand and coarse sand. Content of ten major and minor elements in these six fractions was analyzed; SiO2, A12O3, Fe2O3, MgO, CaO, K2O, TiO2, Rb2O and SrO were determined by X-ray fluorescence spectrometry, and Na2O was determined by neutron activation analysis. The clay, silt, fine sand and coarse sand mineralogy were estimated semi-quantitatively by X-ray diffraction methods.We propose three indices of geochemical maturity for the soils and test their usefulness as measures of the degree of weathering. Three concomitant factors are proposed to measure the relative resistate, hydrolyzate and oxidate nature of the major elements in the soils.  相似文献   
9.
We applied genetic makers to identify Calanus species occurring in Sagami Bay, Japan, in order to investigate their vertical distribution in the upper 1000 m. First, interspecific genetic distances of three gene loci, mitochondrial small ribosomal RNA (srRNA), nuclear internal transcribed spacers 1 (ITS1) and 2 (ITS2), were estimated from morphologically distinguishable adult females of Calanus sinicus, Calanus jashnovi and Calanus pacificus that were collected from Sagami Bay, the Kuroshio Extension and the Oyashio region, respectively. The highest levels of interspecific genetic distance were observed in srRNA, followed by ITS1 and ITS2. The intraspecific genetic distances within C. sinicus were much lower than the interspecific genetic distances, indicating that DNA sequences in these loci are consistent with the morphological differences. This information was used as a criterion for species identification based on DNA sequence variation, and allowed us to identify the fifth copepodites (CVs) or younger stages of these species. Next, the vertical distribution of Calanus species was investigated in Sagami Bay in May 2006, on the basis of a stratified sampling in the upper 1000 m. By applying the genetic markers, 23 individuals comprising all copepodite stages were allocated into either C. sinicus or C. jashnovi, and the small- and large-sized CVs were identified as C. sinicus and C. jashnovi, respectively. The total abundance of C. sinicus was highest at 0-50 m and decreased with depth. On the contrary, CV individuals of C. sinicus were abundant not only in 0-50 m but also below 200 m with minimum occurrences in 150-200 m depth. C. jashnovi was much less abundant than C. sinicus and comprised of only CIV and CV which occurred in the upper 100 m and deeper than 50 m depths, respectively. The abundance of C. sinicus in the 1000-m water column of Sagami Bay was at a level comparable to that in shelf waters, suggesting the importance of off-shelf individuals in the biological production and organic transport in the respective areas.  相似文献   
10.
We present results from a suite of N-body simulations that follow the formation and accretion history of the terrestrial planets using a new parallel treecode that we have developed. We initially place 2000 equal size planetesimals between 0.5 and 4.0 AU and the collisional growth is followed until the completion of planetary accretion (>100 Myr). A total of 64 simulations were carried out to explore sensitivity to the key parameters and initial conditions. All the important effect of gas in laminar disks are taken into account: the aerodynamic gas drag, the disk-planet interaction including Type I migration, and the global disk potential which causes inward migration of secular resonances as the gas dissipates. We vary the initial total mass and spatial distribution of the planetesimals, the time scale of dissipation of nebular gas (which dissipates uniformly in space and exponentially in time), and orbits of Jupiter and Saturn. We end up with 1-5 planets in the terrestrial region. In order to maintain sufficient mass in this region in the presence of Type I migration, the time scale of gas dissipation needs to be 1-2 Myr. The final configurations and collisional histories strongly depend on the orbital eccentricity of Jupiter. If today’s eccentricity of Jupiter is used, then most of bodies in the asteroidal region are swept up within the terrestrial region owing to the inward migration of the secular resonance, and giant impacts between protoplanets occur most commonly around 10 Myr. If the orbital eccentricity of Jupiter is close to zero, as suggested in the Nice model, the effect of the secular resonance is negligible and a large amount of mass stays for a long period of time in the asteroidal region. With a circular orbit for Jupiter, giant impacts usually occur around 100 Myr, consistent with the accretion time scale indicated from isotope records. However, we inevitably have an Earth size planet at around 2 AU in this case. It is very difficult to obtain spatially concentrated terrestrial planets together with very late giant impacts, as long as we include all the above effects of gas and assume initial disks similar to the minimum mass solar nebular.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号