首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   3篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   11篇
地质学   14篇
海洋学   7篇
天文学   19篇
综合类   1篇
自然地理   15篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1978年   1篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Remote sensing observations by recent successful missions to small bodies have revealed the difficulty in classifying the materials which cover their surfaces into a conventional classification of meteorites. Although reflectance spectroscopy is a powerful tool for this purpose, it is influenced by many factors, such as space weathering, lighting conditions, and surface physical conditions (e.g., particle size and style of mixing). Thus, complementary information, such as elemental compositions, which can be obtained by X‐ray fluorescence (XRF) and gamma‐ray spectrometers (GRS), have been considered very important. However, classifying planetary materials solely based on elemental compositions has not been investigated extensively. In this study, we perform principal component and cluster analyses on 12 major and minor elements of the bulk compositions of 500 meteorites reported in the National Institute of Polar Research (NIPR), Japan database. Our unique approach, which includes using hierarchical cluster analysis, indicates that meteorites can be classified into about 10 groups purely by their bulk elemental compositions. We suggest that Si, Fe, Mg, Ca, and Na are the optimal set of elements, as this set has been used successfully to classify meteorites of the NIPR database with more than 94% accuracy. Principal components analysis indicates that elemental compositions of meteorites form eight clusters in the three‐dimensional space of the components. The three major principal components (PC1, PC2, and PC3) are interpreted as (1) degree of differentiations of the source body (i.e., primitive versus differentiated), (2) degree of thermal effects, and (3) degree of chemical fractionation, respectively.  相似文献   
2.
3.
Natural Hazards - Geotechnical investigation of natural slopes is challengeable especially when natural slopes having higher gradients and access is difficult. Also, it is even more problematic to...  相似文献   
4.
The bootstrap method is used to determine errors of basic attributes of coronal mass ejections (CMEs) visually identified in images obtained by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO) instruments. The basic parameters of CMEs are stored, among others, in a database known as the SOHO/LASCO CME catalog and are widely employed for many research studies. The basic attributes of CMEs (e.g. velocity and acceleration) are obtained from manually generated height-time plots. The subjective nature of manual measurements introduces random errors that are difficult to quantify. In many studies the impact of such measurement errors is overlooked. In this study we present a new possibility to estimate measurements errors in the basic attributes of CMEs. This approach is a computer-intensive method because it requires repeating the original data analysis procedure several times using replicate datasets. This is also commonly called the bootstrap method in the literature. We show that the bootstrap approach can be used to estimate the errors of the basic attributes of CMEs having moderately large numbers of height-time measurements. The velocity errors are in the vast majority small and depend mostly on the number of height-time points measured for a particular event. In the case of acceleration, the errors are significant, and for more than half of all CMEs, they are larger than the acceleration itself.  相似文献   
5.
Abstract— Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture finegrained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light‐gas guns to impact into aerogels finegrained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s?1 similar to the flyby speed at comet P/Wild‐2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X‐ray diffraction (SR‐XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE‐SEM). SR‐XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR‐XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.  相似文献   
6.
The groundwater flow systems and chemistry in the deep part of the coastal area of Japan have attracted attention over recent decades due to government projects such as geological disposal of radioactive waste. However, the continuous groundwater flow system moving from the shallow to deep parts of the sedimentary soft rock has not yet been characterized. Therefore, the Cl, δD and δ18O values of the pore water in the Horonobe coastal area in Hokkaido, Japan, were measured to 1,000 m below the ground surface, and a vertical profile of the pore-water chemistry was constructed to assist in elucidating groundwater circulation patterns in the coastal area. The results show that the groundwater flow regime may be divided into five categories based on groundwater age and origin: (1) fresh groundwater recharged by modern rainwater, (2) fresh groundwater recharged by paleo rainwater during the last glacial age, (3) low-salinity groundwater recharged during the last interglacial period, (4) mixed water in a diffusion zone, and (5) connate water consisting of paleo seawater. These results suggest that the appearance of hydrological units is not controlled by the boundaries of geological formations and that paleo seawater is stored in younger Quaternary sediments.  相似文献   
7.
Novel technologies have been necessary for improving fruit quality and productivity of citrus,labor-saving and orchard conservation on steep slope lands since aging of growers and decrease in the number of successors is remarkable in mountain areas of southwestern Japan. The purpose of this paper is to introduce new technologies for improving citrus production that have been developed in recent years. A new fruit quality control system using drip irrigation and liquid fertilization technique combined with year-round plastic mulching was developed, and it enables high quality and stable citrus fruit production. Water and/or nutrient solution is automatically supplied through drip tubes that are laid under the mulching sheets to give adequate water stress, so as to improve sugar and acid content of fruit. A new transportation system for steep sloping citrus orchards, which is a combination of the monorail system and contour narrow paths, was suggested. A small walking cultivator was developed to explain the procedure of narrow path excavation. After introducing the narrow path, working hours for fertilizer and chemicalherbicide application were reduced. Disasterpr evention mapping of citrus orchards on slope landswas developed based on computer-aided seepage estimation and topographic data. The mapping can show zones of both ascending flow and descendingflow of underground water during heavy rains incitrus orchards. The mapping is considered to be effective for the management of orchards andprevention of erosion on slope lands.  相似文献   
8.
Volatile organic iodine compounds (VOIs) emitted from the ocean surface to the air play an important role in atmospheric chemistry. Shipboard observations were conducted in Funka Bay, Hokkaido, Japan, bimonthly or monthly from March 2012 to December 2014, to elucidate the seasonal variations of VOI concentrations in seawater and their sea-to-air iodine fluxes. The bay water exchanges with the open ocean water of the North Pacific twice a year (early spring and autumn). Vertical profiles of CH2I2, CH2ClI, CH3I, and C2H5I concentrations in the bay water were measured bimonthly or monthly within an identified water mass. The VOI concentrations began to increase after early April at the end of the diatom spring bloom, and represented substantial peaks in June or July. The temporal variation of the C2H5I profile, which showed a distinct peak in the bottom layer from April to July, was similar to the PO4 3? variation profile. Correlation between C2H5I and PO4 3? concentrations (r = 0.93) suggests that C2H5I production was associated with degradation of organic matter deposited on the bottom after the spring bloom. CH2I2 and CH2ClI concentrations increased substantially in the surface and subsurface layers (0–60 m) in June or July resulted in a clear seasonal variation of the sea-to-air iodine flux of the VOIs (high in summer or autumn and low in spring).  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号