首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地球物理   3篇
地质学   5篇
海洋学   1篇
天文学   2篇
自然地理   4篇
  2019年   3篇
  2016年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
2.
The application of steam-assisted gravity drainage (SAGD) to recover heavy oil sands is becoming increasingly important in the northern Alberta McMurray Formation because of the vast resources/reserves accessible with this mechanism. Selecting the stratigraphic elevations of SAGD well pairs is a vital decision for reservoir evaluation and planning. The inherent uncertainty in the distribution of geological variables significantly influences this decision. Geostatistical simulation is used to capture geological uncertainty, which is used can be transformed into a distribution of the best possible well pair elevations. A simple exhaustive calculation scheme is used to determine the optimum stratigraphic location of a SAGD well pair where the recovery R is maximized. There are three basic steps to the methodology: (1) model the uncertainty in the top continuous bitumen (TCB) and bottom continuous bitumen (BCB) surfaces, (2) calculate the recovery at all possible elevation increments within the TCB and BCB interval, and (3) identify the elevation that maximizes R. This is repeated for multiple TCB/BCB pairs of surfaces to assess uncertainty. The methodology is described and implemented on a subset of data from the Athabasca Oilsands in Fort McMurray, Alberta.  相似文献   
3.
Stepwise Conditional Transformation for Simulation of Multiple Variables   总被引:4,自引:0,他引:4  
Most geostatistical studies consider multiple-related variables. These relationships often show complex features such as nonlinearity, heteroscedasticity, and mineralogical or other constraints. These features are not handled by the well-established Gaussian simulation techniques. Earth science variables are rarely Gaussian. Transformation or anamorphosis techniques make each variable univariate Gaussian, but do not enforce bivariate or higher order Gaussianity. The stepwise conditional transformation technique is proposed to transform multiple variables to be univariate Gaussian and multivariate Gaussian with no cross correlation. This makes it remarkably easy to simulate multiple variables with arbitrarily complex relationships: (1) transform the multiple variables, (2) perform independent Gaussian simulation on the transformed variables, and (3) back transform to the original variables. The back transformation enforces reproduction of the original complex features. The methodology and underlying assumptions are explained. Several petroleum and mining examples are used to show features of the transformation and implementation details.  相似文献   
4.
Trend modelling is an important part of natural resource characterization. A common approach to account for a variable with a trend is to decompose it into a relatively smoothly varying trend and a more variable residual component. Then, the residuals are stochastically modelled independent of the trend. This decomposition can result in values outside the plausible range of variability, such as grades below zero or ratios that exceed 1.0. We transform the residuals conditional to the trend component to explicitly remove these complex features prior to geostatistical modelling. Back transformation of the modelled residual values allows the complex relations to be reproduced. A petroleum-related application shows the robustness of the proposed transformation. Furthermore, a mining application shows that when this conditional transformation is applied to the original variable, instead of the residual, simulated values are assured to be nonnegative.  相似文献   
5.
Abstract– There are 31 proven impact structures in Fennoscandia—one of the most densely crater‐populated areas of the Earth. The recently discovered Keurusselkä impact structure (62°08′ N, 24°37′ E) is located within the Central Finland Granitoid Complex, which formed 1890–1860 Ma ago during the Svecofennian orogeny. It is a deeply eroded complex crater that yields in situ shatter cones with evidence of shock metamorphism, e.g., planar deformation features in quartz. New petrophysical and rock magnetic results of shocked and unshocked target rocks of various lithologies combined with paleomagnetic studies are presented. The suggested central uplift with shatter cones is characterized by increased magnetization and susceptibility. The presence of magnetite and pyrrhotite was observed as carriers for the remanent magnetization. Four different remanent magnetization directions were isolated: (1) a characteristic Svecofennian target rock component A with a mean direction of D = 334.8°, I = 45.6°, α95 = 14.9° yielding a pole (Plat = 51.1°, Plon = 241.9°, A95 = 15.1°), (2) component B, D = 42.4°, I = 64.1°, α95 = 8.4° yielding a pole (Plat = 61.0°, Plon = 129.1°, A95 = 10.6°), (3) component C (D = 159.5°, I = 65.4°, α95 = 10.7°) yielding a pole (Plat = 21.0°, Plon = 39.3°, A95 = 15.6°), and (4) component E (D = 275.5°, I = 62.0°, α95 = 14.4°) yielding a pole (Plat = 39.7°, Plon = 314.3°, A95 = 19.7°). Components C and E are considered much younger, possibly Neoproterozoic overprints, compared with the components A and B. The pole of component B corresponds with the 1120 Ma pole of Salla diabase dyke and is in agreement with the 40Ar/39Ar age of 1140 Ma from a pseudotachylitic breccia vein in a central part of the structure. Therefore, component B could be related to the impact, and thus represent the impact age.  相似文献   
6.
Impact cratering is one of the fundamental processes in the formation of the Earth and our planetary system, as reflected, for example in the surfaces of Mars and the Moon. The Earth has been covered by a comparable number of impact scars, but due to active geological processes, weathering, sea floor spreading etc, the number of preserved and recognized impact craters on the Earth are limited. The study of impact structures is consequently of great importance in our understanding of the formation of the Earth and the planets, and one way we directly, on the Earth, can study planetary geology.
The Nordic-Baltic area have about thirty confirmed impact structures which makes it one of the most densely crater-populated terrains on Earth. The high density of identified craters is due to the level of research activity, coupled with a deterministic view of what we look for. In spite of these results, many Nordic structures are poorly understood due to the lack of 3D-geophysical interpretations, isotopeor other dating efforts and better knowledge of the amount of erosion and subsequent tectonic modifications.
The Nordic and Baltic impact community is closely collaborating in several impact-related projects and the many researchers (about forty) and PhD students (some seventeen) promise that this level will continue for many more years. The main topics of research include geological, geophysical and geochemical studies in combination with modeling and impact experiments. Moreover, the Nordic and Baltic crust contains some hundred suspect structures which call for detailed analysis to define their origin.
New advanced methods of analyzing geophysical information in combination with detailed geochemical analyses and numerical modeling will be the future basic occupation of the impact scientists of the region. The unique Cretaceous/Tertiary boundary (K-T) occurrences in Denmark form an important source of information in explaining one of the major mass extinctions on Earth.  相似文献   
7.
There is a need to estimate reserve uncertainty for large lease areas. Detailed 3D models of heterogeneity are not necessarily required, but there is a need to integrate all available data into an in-situ reserve estimate with uncertainty. A 2D mapping approach is presented to appraise reserves accounting for multiple variables, multiple data sources, and uncertainty. The approach can be considered in three primary steps: (1) Bayesian updating is used to determine local distributions of uncertainty for each primary variable while integrating multiple secondary information, (2) matrix simulation is employed to jointly and simultaneously simulate multiple collocated variables to determine a derived variable such as OOIP, and (3) probability field simulation then is applied to permit joint simulation of multiple locations. This methodology permits local and global uncertainty assessment while integrating multiple sources of information. An application to the McMurray Formation in Alberta, Canada is demonstrated.  相似文献   
8.
Soil susceptibility to detachment and transport sub-processes of erosion is generally controled by the aggregate breakdown mechanism. Measuring particle size and aggregation to the estimate erodibility potential of soils is important under erosive rainfall conditions. The Aggregate Size Distribution (ASD) is one of the most important determinants of soil structure along with soil organic matter content for describing the efficiency of applied, sustainable management strategies. This study aimed to compare the performances of three different aggregate size distribution models to predict the characteristic aggregate size parameter (median diameter, D50) for eroded sediment from interrill erosion processes of Rain- Splash Transport (RST) and Raindrop Impacted Flow Transport (RIFT). The ASDs of 1143 collected sediment samples from the RST and RIFT processes were measured and modeled by the Log-normal, Fractal, and Weibull approaches. The D50 value, as a characteristic parameter for aggregate size distributions, derived from the cumulative ASD curve was compared for soils from different land use types and different slope and rainfall intensity conditions. The performance of each model was evaluated using the Mean Square Error (MSE) and Coefficient of Determination (R^2). The Weibull approach was the most accurate model showing the best fit with the lowest MSE values (0.0002 ≤MSE≤ 0.0048) and having the greatest R2 values (0.936≤ R^2≤ 0.998) when compared with the Log-normal and Fractal models. Herewith, for semi-arid land use and soil, specific shape and scale parameters for the Weibull distribution, the respective ASDs were successfully re-generated for modeling the eroded sediment of the simulated RST and RIFT interill processes.  相似文献   
9.
Abstract– Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U‐stage) microscope, for five of the seven distinct shatter cone samples. Based on our U‐stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.  相似文献   
10.
Minimum Acceptance Criteria for Geostatistical Realizations   总被引:2,自引:0,他引:2  
Geostatistical simulation is being used increasingly for numerical modeling of natural phenomena. The development of simulation as an alternative to kriging is the result of improved characterization of heterogeneity and a model of joint uncertainty. The popularity of simulation has increased in both mining and petroleum industries. Simulation is widely available in commercial software. Many of these software packages, however, do not necessarily provide the tools for careful checking of the geostatistical realizations prior to their use in decision-making. Moreover, practitioners may not understand all that should be checked. There are some basic checks that should be performed on all geostatistical models. This paper identifies (1) the minimum criteria that should be met by all geostatistical simulation models, and (2) the checks required to verify that these minimum criteria are satisfied. All realizations should honor the input information including the geological interpretation, the data values at their locations, the data distribution, and the correlation structure, within acceptable statistical fluctuations. Moreover, the uncertainty measured by the differences between simulated realizations should be a reasonable measure of uncertainty. A number of different applications are shown to illustrate the various checks. These checks should be an integral part of any simulation modeling work flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号