首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   3篇
  国内免费   2篇
大气科学   7篇
地球物理   28篇
地质学   25篇
海洋学   22篇
天文学   44篇
自然地理   7篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   10篇
  2008年   6篇
  2007年   2篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1976年   5篇
  1975年   1篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
Multiple sulfur isotope system is a powerful new tracer for atmospheric, volcanic, and biological influences on sulfur cycles in the anoxic early Earth. Here, we report high-precision quadruple sulfur isotope analyses (32S/33S/34S/36S) of barite, pyrite in barite, and sulfides in related hydrothermal and igneous rocks occurring in the ca. 3.5 Ga Dresser Formation, Western Australia. Our results indicate that observed isotopic variations are mainly controlled by mixing of mass-dependently (MD) and non-mass-dependently fractionated (non-MD) sulfur reservoirs. Based on the quadruple sulfur isotope systematics (δ34S-Δ33S-Δ36S) for these minerals, four end-member sulfur reservoirs have been recognized: (1) non-MD sulfate (δ34S = −5 ± 2‰; Δ33S = −3 ± 1‰); (2) MD sulfate (δ34S = +10 ± 3‰); (3) non-MD sulfur (δ34S > +6‰; Δ33S > +4‰); and (4) igneous MD sulfur (δ34S = Δ33S = 0‰). The first and third components show a clear non-MD signatures, thus probably represent sulfate and sulfur aerosol inputs. The MD sulfate component (2) is enriched in 34S (+10 ± 3‰) and may have originated from microbial and/or abiotic disproportionation of volcanic S or SO2. Our results reconfirm that the Dresser barites contain small amounts of pyrite depleted in 34S by 15-22‰ relative to the host barite. These barite-pyrite pairs exhibit a mass-dependent relationship of δ33S/δ34S with slope less than 0.512, which is consistent with that expected for microbial sulfate reduction and is significantly different from that of equilibrium fractionation (0.515). The barite-pyrite pairs also show up to 1‰ difference in Δ36S values and steep Δ36S/Δ33S slopes, which deviate from the main Archean array (Δ36S/Δ33S = −0.9) and are comparable to isotope effects exhibited by sulfate reducing microbes (Δ36S/Δ33S = −5 to −11). These new lines of evidence support the existence of sulfate reducers at ca. 3.5 Ga, whereas microbial sulfur disproportionation may have been more limited than recently suggested.  相似文献   
2.
The aim of the Japanese-French Kaiyo 87 cruise was the study of the spreading axis in the North Fiji Basin (SW Pacific). A Seabeam and geophysical survey allowed us to define the detailed structure of the active NS spreading axis between 16° and 22° S and its relationships with the left lateral motion of the North Fiji Fracture Zone. Between 21° S and 18°10′ S, the spreading axis trends NS. From 18°10 S to 16°40 S the orientation of the spreading axis changes from NS to 015°. North of 16°40′ S the spreading axis trends 160°. These two 015° and 160° branches converge with the left lateral North Fiji fracture zone around 16°40′ S to define an RRFZ triple junction. Water sampling, dredging and photo TV deep towing give new information concerning the hydrothermal activity along the spreading axis. The discovery of hydrothermal deposits associated with living communities confirms this activity.  相似文献   
3.
In each of six areas with various horizontal scale from 0.4 to 15.6 nautical miles, many surveys with vertical net hauls are made for sampling fish eggs and larvae. Though values ofC A are widely spread in each area, the variances 2 and the meanm of catch numbers calculated from each survey follow approximately the relation from a Poisson mixture model (PMM).
  相似文献   
4.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   
5.
Kosugi  Takeo 《Solar physics》1982,113(1-2):327-332
Recent observational studies on solar flares made by solar radio groups in Japan during the period around the maximum of Cycle 21 are briefly reviewed. Much attention is paid especially to comparison studies of microwave observations with hard X-ray and -ray observations.  相似文献   
6.
A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of several subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of 0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are 1 s, 1 s and 3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model.  相似文献   
7.
More than 600 specimens of ∼3.5 Ga-old hydrothermal silica dikes from the North Pole area, Pilbara craton, Western Australia, have been studied petrographically. The kerogens in 44 samples have been analyzed isotopically (C and N) and chemically (C, N, and H). The silica dikes are composed mainly of fine-grained silica (modal abundance: >97%) and are classified into two types by minor mineral assemblages: B(black)-type and G(gray)-type. The B-type silica dikes contain kerogen (0.37 to 6.72 mgC/g; average 2.44 mgC/g, n = 21) and disseminated sulfides, dominantly pyrite and Fe-poor sphalerite. In some cases, carbonate and apatite are also present. Their silica-dominated and sulfide-poor mineral assemblages suggest precipitation from low-temperature reducing hydrothermal fluid (likely 100-200°C). On the other hand, the G-type silica dikes are sulfide-free and concentrations of kerogen are relatively low (0.05 to 0.41 mgC/g; average 0.17 mgC/g, n = 13). They typically contain Fe-oxide (mainly hematite) which commonly replaces cubic pyrite and rhombic carbonate. Some G-types occur along secondary quartz veins. These textures indicate that the G-type silica dikes were formed by postdepositional metasomatism (oxidation) of the B-types, and that the B-types probably possess premetasomatic signatures. The δ13C values of kerogen in the B-types are −38.1 to −33.1‰ (average −35.9‰, n = 21), which are ∼4‰ lower than those of the G-types (−34.5 to −30.0‰; average −32.2‰, n = 19), and ∼6‰ lower than bedded chert (−31.2 to −29.4‰; average −30.5‰, n = 4). This indicates the preferential loss of 12C during the metasomatism (estimated fractionation factor: 0.9985). Considering the metasomatic effect on carbon isotopes with probably minor diagenetic and metamorphic overprints, we conclude that the original δ13C values of the kerogen in the silica dikes would have been heterogeneous (∼5‰) and at least some material had initial δ13C values of ≤ −38‰. The inferred 13C-depletions of organic carbon could have been produced by anaerobic chemoautotrophs such as methanogen, but not by aerobic photoautotrophs. This is consistent with the estimated physical and chemical condition of the hydrothermal fluid, which was probably habitable for anaerobic and thermophilic/hyperthermophilic chemoautotrophs. Alternatively, the organic matter may have been possibly produced by abiological reaction such as Fischer-Tropsch Type (FTT) synthesis under the hydrothermal condition. However, the estimated condition is inconsistent with the presence of the effective catalysts for the FTT reaction (i.e., Fe-Ni alloy, magnetite, and hematite). These lines of evidence suggest the possible existence of biosphere in the ∼3.5 Ga sub-seafloor hydrothermal system.  相似文献   
8.
9.
Summary The Japan Meteorological Agency (JMA) has used a tropical cyclone bogus insertion procedure to produce correctlypositioned, cyclone-like vortices within the initial analyses and to track the vortices throughout the model forecasts. The TC bogus soundings are constructed from a standard axisymmetric vortices for well developed tropical cyclones based on a few manually-analyzed parameters such as storm position, central pressure and radius of gale force wind. Mainly because of such an axi-symmetric property of JMA TC bogus data, which is likely to remove the steering flow from the central core region of TC, all the JMA models have a noticeable slow-start bias error and also northward drifting blas error in TC movement. In order to investigate the impact of asymmetric wind components on the TC track forecast, an experimental analysis-forecast cycle is conducted using the JMA global spectral model, in which asymmetric components extracted from the first guess fields are added to the axisymmetric TC bogus. It is found from the experiment that both the slow-start bias error and northward bias error can be reduced by introducing the asymmetric components into the TC bogus. Besides the impact study, a statistical verification study of the bogus data was also made against real data such as sonde data and superiority of the preparation method of asymmetric components was proved.With 9 Figures  相似文献   
10.
Abstract The 1995 Kobe (Hyogo-ken Nanbu) earthquake (MJMA 7.2, Mw 6.9) occurred on Jan. 17, 1995, at a depth of 17 km, beneath the areas of southern part of Hyogo prefecture and Awaji Island. To investigate P-wave velocity distribution and seismological characteristics in the aftershock area of this great earthquake, a wide-angle and refraction seismic exploration was carried out by the Research Group for Explosion Seismology (RGES) . The profile including 6 shot points and 205 observations was 135 km in length, extending from Keihoku, Northern Kyoto prefecture, through Kobe, to Seidan on Awaji Island. The charge of each shot was 350–700 kg. The P-wave velocity structure model showed a complicated sedimentary layer which is shallower than 2.5 km, a 2.5 km-thick basement layer whose velocity is 5.5 km/s, overlying the crystalline upper crust, and the boundary between the upper and lower crust.
Almost all aftershock hypocenters were located in the upper crust. However, the structure model suggests that the hypocenters of the main shock and some aftershock clusters were situated deeper than the boundary between the upper and lower crust. We found that the P-velocity in the upper crust beneath the northern part of Awaji Island is 5.64 km/s which is 3% lower than that of the surrounding area. The low-velocity zone coincides with the region where the high stress moment release was observed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号