首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   8篇
  国内免费   3篇
大气科学   19篇
地球物理   48篇
地质学   46篇
海洋学   45篇
天文学   24篇
自然地理   10篇
  2023年   1篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   5篇
  2017年   1篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   3篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   15篇
  2007年   7篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1977年   2篇
排序方式: 共有192条查询结果,搜索用时 20 毫秒
1.
We investigated the tectonothermal history of the Lesser Himalayan sediments (LHS), which are tectonically overlain by the Higher Himalayan Crystalline. Fission‐track dating and the track length measurement of detrital zircons obtained from the Kuncha nappe and the Lesser Himalayan autochthonous sediments in western central Nepal revealed northward cooling of the nappe and possible downward heating of the autochthon by the overlying hot nappe. Nine zircon fission‐track (ZFT) ages of the nappe showed northward‐younging linear distribution from 11.6 Ma in the front at Tamghas, 6 Ma in the central at Naudanda, and 1.6 Ma in the northernmost point at Tatopani. Thermochronological invert calculation of the ZFT length elucidated that the Kuncha nappe gradually cooled down (30 °C/Myr) at the front and rapidly cooled down (120 °C/Myr) at the root zone. In contrast, the ZFT age of the Chappani Formation, located just beneath the Kuncha nappe in the central part, demonstrated a totally reset age of 6.8 Ma, whereas the Virkot Formation, structurally far from the nappe, yielded a partially reset age of 457.3 Ma. This suggests that the LHS underwent downward heating, resulting in a thermal print on the upper part of the LHS; however, the thermal effect was not sufficient to anneal ZFT totally in the deeper part. Presently, the nappe cover is eroded and denuded from this area. Detrital zircons from the Chappani Formation in Tansen area to the south of the Bari Gad Fault did not show any evidence of annealing, suggesting that nappe never covered the LHS distributed to the south of the fault.  相似文献   
2.
Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2‐return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2‐return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.  相似文献   
3.
Buckling‐restrained braces (BRBs) are widely used as ductile seismic‐resistant and energy‐dissipating structural members in seismic regions. Although BRBs are expected to exhibit stable hysteresis under cyclic axial loading, one of the key limit states is global flexural buckling, which can produce an undesirable response. Many prior studies have indicated the possibility of global buckling of a BRB before its core yields owing to connection failure. In this paper, BRB stability concepts are presented, including their bending‐moment transfer capacity at restrainer ends for various connection stiffness values with initial out‐of‐plane drifts, and a unified simple equation set for ensuring BRB stability is proposed. Moreover, a series of cyclic loading tests with initial out‐of‐plane drifts are conducted, and the results are compared with those of the proposed equations. © 2013 The Authors. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   
4.
This study is concerned with the tectono‐thermal history of the Kathmandu nappe and the underlying Lesser Himalayan sediments (LHS) that are distributed in eastern Nepal. We carried out zircon fission‐track(ZFT) dating and obtained 16 ZFT ages from the eastern extension of the Kathmandu nappe, the Higher Himalayan Crystalline, Kuncha nappe, and the Main Central Thrust (MCT) zone. The ZFT ages of the frontal part of the Kathmandu nappe range from 13.0 ±0.8 Ma to 10.7 ±0.7 Ma and exhibit a northward‐younging tendency. These Middle Miocene ZFT ages indicate that the frontal part of the Kathmandu nappe remained at a temperature above 240 °C until the termination of its southward emplacement at 12–11 Ma. The ZFT ages of the LHS range from 11.1 ±0.9 Ma in the southern part of the Okhaldhunga Window to 2.4 ±0.3 Ma of the augen gneiss in the northern margin and also exhibit a northward‐younging age distribution. The ZFT ages show the northward‐younging linear distribution pattern (?0.16 Ma/km) along the across‐strikesection from the frontal part of the Kathmandu nappe to the root zone, without a significant age gap. This distribution pattern indicates that the Kathmandu nappe, the underlying MCT zone, and the Kuncha nappe cooled from the frontal zone to the root zone as a thermally united geologic body at a temperature below 240 °C. An older ZFT age (456.3 ±24.3 Ma), which was partially reset at the axial part of the Midland anticlinorium in the central part of the Okhaldhunga Window, was explained by downward heating from the “hot” Kathmandu nappe. The above evidence supported a model that southward emplacement of the hot Kathmandu nappe resulted in a thermal imprint on the upper part of the LHS; however, the lower part did not reach 240 °C.  相似文献   
5.
Sandy shelf sediments are important elements of clastic sedimentary systems because of their wide distribution in the geological record and their significance as hydrocarbon reservoirs. Although many studies have investigated shelf sediments influenced by waves or tidal currents, little is known about shelf sediments influenced by oceanic currents, particularly their lithofacies characteristics and stratigraphic evolution. This study investigated the stratigraphic evolution of shelf sediments off the Kujukuri strandplain facing the Pacific Ocean, which is influenced by the strong Kuroshio Current. Sediment cores were obtained from six locations on the Kujukuri shelf (34 to 124 m water depth) using a vibrocorer. The dominant lithofacies is mud-free sand with low-angle cross-lamination associated with alternating beds of finer and coarser sand with cross-lamination. These display depositional processes influenced by storm waves and the Kuroshio Current, respectively. This finding is consistent with the previously presented modern and historical observations of the Kuroshio Current and estimates of the storm-wave base. Radiocarbon dates show that the sediment succession formed during the last transgressive and highstand stages after 13·1 ka. The depositional processes during the stages represent a transition from storm waves with abundant sediment supply to both storm waves and the Kuroshio Current with sediment starvation mainly due to its trapping in the strandplain. Comparison to other Holocene–Modern shelf systems suggests that the sandy shelf successions are strongly influenced by oceanic currents under conditions of limited riverine input and open coastal geometry. The resultant sand-dominated succession is characterized by reversal of the proximal to distal grain-size trend compared to the fining for most other recognized wave/storm-dominated shelf successions. This is because of seaward increase in the influence of the Kuroshio Current. Thus, shelf deposits are naturally complex, and these may be further complicated by the additional influence of oceanic currents above the usual wave-dominated and tide-dominated end members.  相似文献   
6.
7.
8.
日本原子能机构(Japan Atomic Energy Agency)提出了一种方法,即通过地表原地应力测量所得的有限数据精确估算任意一点的实际原地应力状态分布.我们假定实际地应力是由上覆岩层压力和板块构造力的综合作用形成的,并建立了两种模型:三维有限元模型和边界元模型,模型考虑了地质情况的不均匀性,如岩石类型的变化和...  相似文献   
9.
We investigated the feasibility of the ensemble Kalman filter (EnKF) to reproduce oceanic conditions south of Japan. We have adopted the local ensemble transformation Kalman filter algorithm based on 20 members’ ensemble simulations of the parallelized Princeton Ocean Model (the Stony Brook Parallel Ocean Model) with horizontal resolution of 1/36°. By assimilating satellite sea surface height anomaly, satellite sea surface temperature, and in situ temperature and salinity profiles, we reproduced the Kuroshio variation south of Japan for the period from 8 to 28 February 2010. EnKF successfully reproduced the Kuroshio path positions and the water mass property of the Kuroshio waters as observed. It also detected the variation of the steep thermohaline front in the Kii Channel due to the intrusion of the Kuroshio water based on the observation, suggesting efficiency of EnKF for detection of open and coastal seas interactions with highly complicated spatiotemporal variability.  相似文献   
10.
Yasu'uchi  Kubota  Toru  Takeshita 《Island Arc》2008,17(1):129-151
Abstract   The Median Tectonic Line (MTL) in southwest Japan, a major east–west-trending arc-parallel fault, has been defined as the boundary fault between the Cretaceous Sambagawa metamorphic rocks and Ryoke granitic and metamorphic rocks, which are unconformably covered by the Upper Cretaceous Izumi Group. The juxtaposition by faulting occurred after the deposition of the Izumi Group. Based on detailed fieldwork and previous studies, the authors reconstruct the kinematic history along the MTL during the Paleogene period, which has not been fully understood before. It is noted that although the strata of the Izumi Group along the MTL dip gently, east–west-trending north-vergent folds with the wavelength of ∼300 m commonly develop up to 2 km north from the MTL. Along the MTL, a disturbed zone of the Izumi Group up to 400 m thick, defined by the development of boudinage structures with the transverse boudin axis dipping nearly parallel to the MTL, occurs. Furthermore, east–west-trending north-vergent folds with the wavelength of 1–5 m develop within the distance up to 60 m from the MTL. The disturbed zone with the map-scale north-vergent folds along the MTL, strongly suggests that they formed due to normal faulting with a top-to-the-north sense along the MTL. Considering that the normal faulting is associated with the final exhumation of the Sambagawa metamorphic rocks, and its juxtaposition against the Izumi Group at depth, this perhaps occurred before the denudation of the Sambagawa metamorphic rocks indicated by the deposition of the Lower Eocene Hiwada-toge Formation. Dynamic equilibrium between crustal thickening at depth (underplating) and extension at shallow level is a plausible explanation for the normal faulting because the arc-normal extension suggests gravity as the driving force.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号