首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   2篇
  国内免费   3篇
测绘学   5篇
大气科学   21篇
地球物理   31篇
地质学   50篇
海洋学   26篇
天文学   16篇
综合类   3篇
自然地理   15篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   15篇
  2012年   7篇
  2011年   4篇
  2010年   10篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   5篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
  1968年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
  1948年   1篇
排序方式: 共有167条查询结果,搜索用时 234 毫秒
1.
Meteorological time-series data are a fundamental input to hydrological investigations. But sourcing data is often laborious and plagued with difficulties. In an effort to improve efficiency and rigor we present an R-package, named AWAPer ( https://github.com/peterson-tim-j/AWAPer ), for the efficient estimation of daily area weighted catchment average and spatial variance of meteorological variables, including evapotranspiration. The package allows creation and updating of a data-cube of gridded daily data from 1900 onwards. Once created, point and area weighted estimates can be extracted at user-defined locations and time periods for anywhere within Australia. Examples of point and catchment average extraction are presented.  相似文献   
2.
Intertidal zones by definition are exposed to air at low tide, and the exposure duration can be weeks (e.g. during neap tides) depending on water level and bed elevation. Here we investigated the effect of varying exposure duration (6 h to 10 days) on intertidal mudflat erosion (measured using the EROMES device), where the effects of water content and biofilm biomass (using chlorophyll-a content as a proxy, Chl-a μg g−1) were taken into account. Sediments were collected between spring and summer (in October 2018, January 2019 and February 2019) from an intertidal site in the Firth of Thames, New Zealand. Longer exposure duration resulted in more stable sediments [higher erosion threshold (Ƭcr, N m−2) and lower erosion rate (ER, g m−2 s−1)]. After 10 days, exposure increased Ƭcr by 1.7 to 4.4 times and decreased ER by 11.6 to 21.5 times compared with 6 h of exposure. Chl-a and water content changed with exposure duration and were significantly correlated with changes in Ƭcr and ER. The stability of sediments after two re-submersion periods following exposure was also examined and showed that the stabilizing effect of exposure persisted even though water content had increased to non-exposure levels. Re-submersion was associated with an increase in Chl-a content, which likely counteracted the destabilizing influence of increased water content. A site-specific model, which included the interplay between evaporation and biofilm biomass, was developed to predict water content as a function of exposure duration. The modelled water content (WMod.) explained 98% of the observed variation in water content (WObs.). These results highlight how the exposure period can cause subtle changes to erosion regimes of sediments. An understanding of these effects (e.g. in sediment transport modelling) is critical to predicting the resilience of intertidal zones into the future, when sea-level rise is believed to exacerbate erosion in low-lying areas. © 2020 John Wiley & Sons, Ltd.  相似文献   
3.
4.
5.
Small, steep, uplifting coastal watersheds are prolific sediment producers that contribute significantly to the global marine sediment budget. This study illustrates how sedimentation evolves in one such system where the continental shelf is largely sediment-starved, with most terrestrial sediment bypassing the shelf in favor of deposition in deeper basins. The Santa Barbara–Ventura coast of southern California, USA, is considered a classic area for the study of active tectonics and of Tertiary and Quaternary climatic evolution, interpretations of which depend upon an understanding of sedimentation patterns. High-resolution seismic-reflection data over >570 km2 of this shelf show that sediment production is concentrated in a few drainage basins, with the Ventura and Santa Clara River deltas containing most of the upper Pleistocene to Holocene sediment on the shelf. Away from those deltas, the major factor controlling shelf sedimentation is the interaction of wave energy with coastline geometry. Depocenters containing sediment 5–20 m thick exist opposite broad coastal embayments, whereas relict material (bedrock below a regional unconformity) is exposed at the sea floor in areas of the shelf opposite coastal headlands. Locally, natural hydrocarbon seeps interact with sediment deposition either to produce elevated tar-and-sediment mounds or as gas plumes that hinder sediment settling. As much as 80% of fluvial sediment delivered by the Ventura and Santa Clara Rivers is transported off the shelf (some into the Santa Barbara Basin and some into the Santa Monica Basin via Hueneme Canyon), leaving a shelf with relatively little recent sediment accumulation. Understanding factors that control large-scale sediment dispersal along a rapidly uplifting coast that produces substantial quantities of sediment has implications for interpreting the ancient stratigraphic record of active and transform continental margins, and for inferring the distribution of hydrocarbon resources in relict shelf deposits.  相似文献   
6.
7.
8.
9.
Finding the location of groundwater dependent ecosystems (GDEs) is important in determining the extent of restrictions that need to be placed upon the abstraction of groundwater. Remote sensing was combined with geographical information system (GIS) modelling to produce a GDE probability rating map for the Sandveld region, South Africa. Landsat TM imagery identified the areas indicating the probable presence of GDEs and GIS assisted in their delineation. Three GIS models were generated: a GIS model predicting landscape wetness potential (LWP model) based on terrain morphological features; the LWP model was modified to highlight groundwater generated landscape wetness potential (the resulting GglWP model); and a groundwater elevation model was interpolated, combining groundwater level measurements in boreholes in the region with digital elevation model data. Biomass indicators generated from Landsat were classified and combined with the GIS models, followed by field verification of riverine and wetland GDEs. The LWP model provided the most accurate results of the three models tested for GDEs in this region.
Zahn MünchEmail:
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号