首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   13篇
  国内免费   2篇
测绘学   2篇
大气科学   10篇
地球物理   50篇
地质学   61篇
海洋学   29篇
天文学   44篇
自然地理   3篇
  2023年   1篇
  2021年   2篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   6篇
  2010年   7篇
  2009年   11篇
  2008年   10篇
  2007年   11篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   5篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1981年   2篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
1.
All mesosiderites previously reported were subjected to thermal metamorphism and/or partial melting on the parent body. Therefore, their primordial features have been mostly lost. Here, we report detailed petrological and mineralogical features on a mesosiderite, Northwest Africa (NWA) 1878. This meteorite comprises silicate lithology and aggregates of small spheroidal Fe‐Ni metal grains. Silicate lithology typically shows igneous texture without recrystallization features, and mainly consists of low‐Ca pyroxene and plagioclase. Pyroxenes often show normal zoning. Exsolution lamella of augite is rarely noticed and very thin in width, compared with other mesosiderites. A few magnesian olivine grains are encountered without typical corona texture around them. They are not equilibrated with pyroxene on a large scale. Plagioclase shows a wide compositional range. These results show that NWA 1878 hardly experienced thermal metamorphism, distinguished from mesosiderites of subgroups 1–4. Therefore, we propose that this is classified as subgroup 0 mesosiderite. Nevertheless, NWA 1878 was locally subjected to secondary reactions, such as weak reduction of pyroxene and Fe‐Mg diffusion between olivine and pyroxene, on the parent body.  相似文献   
2.
High‐precision secondary ion mass spectrometry (SIMS) was employed to investigate oxygen three isotopes of phenocrysts in 35 chondrules from the Yamato (Y) 82094 ungrouped 3.2 carbonaceous chondrite. Twenty‐one of 21 chondrules have multiple homogeneous pyroxene data (?17O 3SD analytical uncertainty: 0.7‰); 17 of 17 chondrules have multiple homogeneous pyroxene and plagioclase data. Twenty‐one of 25 chondrules have one or more olivine data matching coexisting pyroxene data. Such homogeneous phenocrysts (1) are interpreted to have crystallized from the final chondrule melt, defining host O‐isotope ratios; and (2) suggest efficient O‐isotope exchange between ambient gas and chondrule melt during formation. Host values plot within 0.7‰ of the primitive chondrule mineral (PCM) line. Seventeen chondrules have relict olivine and/or spinel, with some δ17O and δ18O values approaching ?40‰, similar to CAI or AOA‐like precursors. Regarding host chondrule data, 22 of 34 have Mg#s of 98.8–99.5 and ?17O of ?3.9‰ to ?6.1‰, consistent with most Acfer 094, CO, CR, and CV chondrite chondrules, and suggesting a common reduced O‐isotope reservoir devoid of 16O‐poor H2O. Six Y‐82094 chondrules have ?17O near ?2.5‰, with Mg#s of 64–97, consistent with lower Mg# chondrules from Acfer 094, CO, CR, and CV chondrites; their signatures suggest precursors consisting of those forming Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules plus 16O‐poor H2O, at high dust enrichments. Three type II chondrules plot slightly above the PCM line, near the terrestrial fractionation line (?17O: ~+0.1‰). Their O‐isotopes and olivine chemistry are like LL3 type II chondrules, suggesting they sampled ordinary chondrite‐like chondrule precursors. Finally, three Mg# >99 chondrules have ?17O of ?6.7‰ to ?8.1‰, potentially due to 16O‐rich refractory precursor components. The predominance of Mg# ~99, ?17O: ?5‰ ± 1‰ chondrules and a high chondrule‐to‐matrix ratio suggests bulk Y‐82094 characteristics are closely related to anhydrous dust sampled by most carbonaceous chondrite chondrules.  相似文献   
3.
Illite crystallinity, K–Ar dating of illite, and fission‐track dating of zircon are analyzed in the hanging wall (Sampodake unit) and footwall (Mikado unit) of a seismogenic out‐of‐sequence thrust (Nobeoka thrust) within the Shimanto accretionary complex of central Kyushu, southwest Japan. The obtained metamorphic temperatures, and timing of metamorphism and cooling, reveal the tectono‐metamorphic evolution of the complex, and related development of the Nobeoka thrust. Illite crystallinity data indicate that the Late Cretaceous Sampodake unit was metamorphosed at temperatures of around 300 to 310°C, while the Middle Eocene Mikado unit was metamorphosed at 260 to 300°C. Illite K–Ar ages and zircon fission‐track ages constrain the timing of metamorphism of the Sampodake unit to the early Middle Eocene (46 to 50 Ma, mean = 48 Ma). Metamorphism of the Mikado unit occurred no earlier than 40 Ma, which is the youngest depositional age of the unit. The Nobeoka thrust is inferred to have been active during about 40 to 48 Ma, as the Sampodake unit started its post metamorphic cooling after 48 Ma and was thrust over the Mikado unit at about 40 Ma along the Nobeoka thrust. These results indicate that the Nobeoka thrust was active for more than 10 million years.  相似文献   
4.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   
5.
The conditions under which rear-arc magmas are generated were estimated using primary basalts from the Sannome-gata volcano, located in the rear of the NE Japan arc. Scoriae from the volcano occur with abundant crustal and mantle xenoliths, suggesting that the magma ascended rapidly from the upper mantle. The scoriae show significant variations in their whole-rock compositions (7.9–11.1 wt% MgO). High-MgO scoriae (MgO > ~9.5 wt%) have mostly homogeneous 87Sr/86Sr ratios (0.70318–0.70320), whereas low-MgO scoriae (MgO < ~9 wt%) have higher 87Sr/86Sr ratios (>0.70327); ratios tend to increase with decreasing MgO content. The high-MgO scoriae are aphyric, containing ~5 vol% olivine microphenocrysts with Mg# [100 × Mg/(Mg + Fe2+)] of up to 90. In contrast, the low-MgO scoriae have crustal xenocrysts of plagioclase, alkali feldspar, and quartz, and the mineralogic modes correlate negatively with whole-rock MgO content. On the basis of these observations, it is inferred that the high-MgO scoriae represent primary or near-primary melts, while the low-MgO scoriae underwent considerable interaction with the crust. Using thermodynamic analysis of the observed petrological features of the high-MgO scoriae, the eruption temperature of the magmas was constrained to 1,160–1,220 °C. Given that the source mantle was depleted MORB-source mantle, the primary magma was plausibly generated by ~7 % melting of a garnet-bearing spinel peridotite; taking this into consideration, and considering the constraints of multi-component thermodynamics, we estimated that the primary Sannome-gata magma was generated in the source mantle with 0.5–0.6 wt% H2O at 1,220–1,230 °C and at ~1.8 GPa, and that the H2O content of the primary magma was 6–7 wt%. The rear-arc Sannome-gata magma was generated by a lower degree of melting of the mantle at greater depths and lower temperatures than the frontal-arc magma from the Iwate volcano, which was also estimated to be generated by ~15 % melting of the source mantle with 0.6–0.7 wt% H2O at ~1,250 °C and at ~1.3 GPa.  相似文献   
6.
Abstract— We report petrography, mineral chemistry, and microdistribution of rare earth elements (REE) in a new lherzolitic shergottite, Grove Mountains (GRV) 99027. The textural relationship and REE patterns of minerals suggest precipitation of cumulus olivine and chromite, followed by equilibrium crystallization of a closed system with a bulk composition of the inferred intercumulus melt. Subsolidus equilibrium temperatures of pyroxenes and olivine range from 1100 to 1210 °C, based on a two‐pyroxene thermometry and Ca partitioning between augite and olivine. Oxygen fugacity of the parent magma is 1.5–2.5 (av. 2.0 ± 0.4) log units below the quartz‐fayalite‐magnetite (QFM) buffer at 960–1360 °C, according to the olivine‐orthopyroxene‐chromite barometer. The ilmenite‐chromite barometer and thermometer show much wider ranges of oxygen fugacity (1.0–7.0 log unit below QFM) and temperature (1130–480 °C), suggesting subsolidus equilibration of the oxides at low temperatures, probably due to deep burial of GRV 99027 on Mars. The low oxygen fugacity and LREE depletion of the parent magma of GRV 99027 suggest low contamination by martian crust. Characteristics of GRV 99027 demonstrate similarity of lherzolitic shergottites, suggesting a high possibility of launch pairing or a homogeneous upper mantle of Mars if they were ejected by individual impact events. However, GRV 99027 probably experienced severe post‐shock thermal metamorphism in comparison with other lherzolitic shergottites, based on the re‐crystallization of maskelynite, the homogeneity of minerals, and the low subsolidus equilibrium temperatures between chromite and ilmenite.  相似文献   
7.
Evidence is presented of a lateral variation in differential stress during metamorphism along a regional metamorphic belt on the basis of the proportion of microboudinaged piemontite grains (p) in a quartz matrix in metacherts. It is proposed that p is a practical indicator of relative differential stress. Analysis of 123 metacherts from the 800 km long Sambagawa metamorphic belt, Japan, reveals that p‐values range from < 0.01 to 0.7 in this region. Most samples from Wakayama in the mid‐belt area have p‐values of 0.4–0.6, whereas those from western Shikoku have p‐values of < 0.1. This difference cannot be explained by variations in metamorphic temperature, and is instead attributed to a regional, lateral variation in differential stress during metamorphism.  相似文献   
8.
In three polished thin sections of Yamato 791717 (CO3). fifty-five Ca, Al-rich inclusions were found, which include two hibonite-bearing, eight melilite-rich and forty-five spinel-pyroxene inclusions. Based on the petrography and mineral chemistry of the inclusions, it is proposed that the melilite-rich inclusions and spinel-pyroxene inclusions condensed in the solar nebula, and the hibonite-bearing inclusions crystallized from melts. The heavy alteration of the inclusions in Yamato 791717, which probably took place under a very oxidizing condition in the solar nebular, is also confirmed. Project supported by the National Natural Science Foundation of China (Grant No. 49673200). and by the Japanese Society for Promotion of Sciences (JSPS).  相似文献   
9.
We revised an equation for estimating palaeostress magnitude using the microboudin technique by incorporating the influence of time on the fracture strength of minerals. The equation was used to estimate triaxial palaeostresses from a rare sample of metachert from Turkey that contains microboudinaged, columnar tourmaline grains in a wide range of orientations within the foliation plane. The estimated principal palaeostresses are σ1 = 605 MPa, σ2 = 598 MPa, and σ3 = 597 MPa. As the microboudinage is considered to have occurred immediately before the rock encountered the brittle-plastic transition during exhumation, these stress values correspond to conditions at approximately 18 km depth and 300 °C within a Cretaceous orogenic belt.  相似文献   
10.
Total mass flux, size distribution of sediment particles and some chemical components such as total carbon (TC), total nitrogen (TN) and calcium carbonate (CaCO3) were monitored monthly using a multi-cup sediment traps at seven coral reef sites (6 reef flat and 1 reef slope) of the Marine Protected Areas around Ishigaki, Kohama, Kuroshima and Iriomote Islands in the southern Ryukyus, Japan from September 2000 to September 2001. The size distribution of trapped sediments revealed mostly uni-modal fine sand to mud in the reef flat and gravelly to coarse sand in the reef slope. The total mass flux ranged between 0.54 to 872 gm−2d−1, and showed a pronounced seasonality (high in summer-autumn and low in spring) at each site, which was consistent with the rainfall and typhoon regime. Exceptionally high values were observed on the reef slope (Iriomote) in February–March 2001 (1533 gm−2d−1) owing to a large amount of bottom sediment re-suspension. On the reef flat (Todoroki South and North; Ishigaki), values obtained in July–August 2001 (872 gm−2d−1) and August–September 2001 (800 gm− 2d−1) indicate the high terrestrial discharge from Todoroki River. Trapped sediment particles consist of CaCO3 (1.2–27.1%) and a non-carbonate fraction (98.8–72.9%), which contains total carbon (4.9–26%), carbonate carbon (CO2-C) (0.2–3.1%) and non-carbonate carbon (NC-C) (7.9–25.6%). Total nitrogen content was in the range 0.02–0.48%. TN is contained mainly in the carbonate fraction and NC-C may be contained in the non-carbonate fraction. The low TN/OC ratio of the trapped sediments suggests that they were mostly of terrestrial origin and that both fractions migrated. The high total mass flux derived from Todoroki River exceeded the threshold at which a lethal effect on coral community is caused. The results stress the importance of conducting seasonal studies of sedimentation over more than one year and at more than one location in south Japan coral reef ecosystems to gain an understanding of the processes controlling the total mass fluxes and their nutrients content, also to develop an awareness of how to prevent the damage of coral reef ecosystems and, if it does occur, to allow mitigation measures to be undertaken.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号