首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   6篇
  国内免费   3篇
测绘学   5篇
大气科学   15篇
地球物理   71篇
地质学   45篇
海洋学   46篇
天文学   25篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   10篇
  2015年   2篇
  2014年   8篇
  2013年   7篇
  2012年   5篇
  2011年   10篇
  2010年   9篇
  2009年   14篇
  2008年   17篇
  2007年   11篇
  2006年   18篇
  2005年   8篇
  2004年   12篇
  2003年   3篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1997年   5篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
1.
A bio-optical dataset collected during the 1998?C2007 period in the Yellow and East China Seas (YECS) was used to provide alternative empirical ocean-color algorithms in the retrieval of chlorophyll-a (Chl-a), total suspended matter (TSM), and colored dissolved organic matter (CDOM) absorption coefficients at 440 nm (ag440). Assuming that remote-sensing reflectance (Rrs) could be retrieved accurately, empirical algorithms for TChl (regionally tuned Tassan??s Chl-a algorithm) in case-1 waters (TChl2i in case-2 waters), TTSM (regionally tuned Tassan??s TSM algorithm), and Tag440 or Cag440 (regionally tuned Tassan??s or Carder??s ag440 algorithm) were able to retrieve Chl-a, TSM, and ag440 with uncertainties as high as 35, 46, and 35%, respectively. Applying the standard SeaWiFS Rrs, TChl was not viable in the eastern part of the YECS, which was associated with an inaccurate SeaWiFS Rrs retrieval because of improper atmospheric correction. TChl behaved better than other algorithms in the turbid case-2 waters, although overestimation was still observed. To retrieve more reliable Chl-a estimates with standard SeaWiFS Rrs in turbid water (a proxy for case-2 waters), we modified TChl for data with SeaWiFS normalized water-leaving radiance at 555 nm (nLw555) > 2 mW cm?2 ??m?1 sr?1 (TChl2s). Finally, with standard SeaWiFS Rrs, we recommend switching algorithms from TChl2s (for case-2 waters) to MOCChl (SeaWiFS-modified NASA OC4v4 standard algorithm for case-1 waters) for retrieving Chl-a, which resulted in uncertainties as high as 49%. To retrieve TSM and ag440 using SeaWiFS Rrs, we recommend empirical algorithms for TTSM (pre-SeaWiFS-modified form) and MTag440 or MCag440 (SeaWiFS Rrs-modified forms of Tag440 or Cag440). These could retrieve with uncertainties as high as 82 and 52%, respectively.  相似文献   
2.
Important ecological changes of the Earth(oxidization of the atmosphere and the ocean) increase in nutrient supply due to the break-up of the super continent(Rodinia) and the appearance of multi-cellular organisms(macroscopic algae and metazoan) took place in the Ediacaran period,priming the Cambrian explosion.The strong perturbations in carbon cycles in the ocean are recorded as excursions in carbonate and organic carbon isotope ratio(δ~(13)C_(carb) and δ~(13)C_(org)) from the Ediacaran through early Cambrian periods.The Ediacaran-early Cambrian sediment records of δ~(13)C_(carb) and δ~(13)C_(org),obtained from the drill-core samples in Three Gorges in South China,are compared with the results of numerical simulation of a simple one-zone model of the carbon cycle of the ocean,which has two reservoirs(i.e.,dissolved organic carbon(DOC) and dissolved inorganic carbon(DIC).The fluxes from the reservoirs are assumed to be proportional to the mass of the carbon reservoirs.We constructed a model,referred to here as the Best Fit Model(BFM),which reproduce δ~(13)C_(carb) and δ~(13)C_(org) records in the Ediacaran-early Cambrian period noted above.BFM reveals that the Shuram excursion is related to three major changes in the carbon cycle or the global ecological system of the Earth:(1) an increase in the coefficient of remineralization by a factor of ca.100,possibly corresponding to a change in the dominant metabolism from anaerobic respiration to aerobic respiration,(2) an increase of carbon fractionation index from 25‰ to 33‰,possibly corresponding to the change in the primary producer from rock-living cyanobacteria to free-living macro algae,and(3) an increase in the coefficient of the organic carbon burial by a factor of ca.100,possibly corresponding to the onset of a biological pump driven by the flourishing metazoan and zooplankton.The former two changes took place at the start of the Shuram excursion,while the third occurred at the end of the Shuram excursion.The other two excursions are explained by the tentative decrease in primary production due to cold periods,which correspond to the Gaskiers(ca.580 Ma) and Bikonor(ca.542 Ma) glaciations.  相似文献   
3.
To understand deep groundwater flow systems and their interaction with CO2 emanated from magma at depth in a volcanic edifice, deep groundwater samples were collected from hot spring wells in the Aso volcanic area for hydrogen, oxygen and carbon isotope analyses and measurements of the stable carbon isotope ratios and concentrations of dissolved inorganic carbon (DIC). Relations between the stable carbon isotope ratio (δ13CDIC) and DIC concentrations of the sampled waters show that magma-derived CO2 mixed into the deep groundwater. Furthermore, groundwaters of deeper areas, except samples from fumarolic areas, show higher δ13CDIC values. The waters' stable hydrogen and oxygen isotope ratios (δD and δ18O) reflect the meteoric-water origin of that region's deep groundwater. A negative correlation was found between the altitude of the well bottom and the altitude of groundwater recharge as calculated using the equation of the recharge-water line and δD value. This applies especially in the Aso-dani area, where deeper groundwater correlates with higher recharge. Groundwater recharged at high altitude has higher δ13CDIC of than groundwater recharged at low altitude, strongly suggesting that magmatic CO2 is present to a much greater degree in deeper groundwater. These results indicate that magmatic CO2 mixes into deeper groundwater flowing nearer the magma conduit or chamber.  相似文献   
4.
To better image deformation structures within the inner accretionary wedge of the Nankai Trough, Japan, we apply common reflection angle migration to a legacy two-dimensional seismic data set acquired with a 6 km streamer cable. In this region, many seismic surveys have been conducted to study the seismogenic zone related to plate subduction. However, the details of the accreted sediments beneath the Kumano forearc basin are still unclear due to the poor quality of seismic images caused by multiple reflections, highly attenuated signals, and possibly complex geological structures. Generating common image gathers in the subsurface local angle domain rather than the surface offset domain is more advantageous for imaging geological structures that involve complex wave paths and poor illumination. By applying this method, previously unseen structures are revealed in the thick accreted sediments. The newly imaged geometric features of reflectors, such as the folds in the shallow part of the section and the deep reflectors with stepwise discontinuities, imply deformation structures with multiple thrust faults. The reflections within the deep accreted sediments (approximately 5 km) are mainly mapped to far angles (30°–50°) in the common reflection angles, which correspond to the recorded offset distances greater than 4.5 km. This result indicates that the far offset/angle information is critical to image the deformation structures at depth. The new depth image from the common reflection angle migration provides seismic evidence of multiple thrust faults and their relationship with the megathrust fault that is essential for understanding the structure and evolution of the Nankai Trough seismogenic zone.  相似文献   
5.
The topographic effect of the Izu Ridge on the horizontal distribution of the North Pacific Intermediate Water (NPIW) south of Japan has been studied using observational data obtained by the Seisui-Maru of Mie University (Mie Univ. data) and those compiled by Japan Oceanographic Data Center (JODC data). Both data sets show that water of salinity less than 34.1 psu on potential density () surface of 26.8 is confined to the eastern side of the Izu Ridge, while water of salinity less than 34.2 psu is confined to the southern area over the Izu Ridge at a depth greater than 2000 m and to the southeastern area in the Shikoku Basin. It is also shown by T-S analysis of Mie Univ. data over the Izu Ridge that water of salinity less than 34.2 psu dominates south of 30°N, where the depth of the Izu Ridge is deeper than 2000 m and NPIW can intrude westward over the Izu Ridge. JODC data reveal that relatively large standard deviations of the salinity on surface of 26.7, 26.8 and 26.9 are detected along the mean current path of the Kuroshio and the Kuroshio Extension. Almost all of the standard deviations are less than 0.05 psu in other area with the NPIW, which shows that the time variation in the salinity can be neglected. This observational evidence shows that the topographic effect of the Izu Ridge on the horizontal distribution of the NPIW, which is formed east of 145°E by the mixing of the Kuroshio water and the Oyashio water, is prominent north of 30°N with a depth shallower than 2000 m.  相似文献   
6.
Excess CO2 and pHexcess showing an increase in dissolved inorganic carbon and a decrease in pH from the beginning of the industrial epoch (middle of the 19th century) until the present time have been calculated in the intermediate water layer of the northwestern Pacific and the Okhotsk Sea. It is concluded that: (1) The Kuril Basin (Okhotsk Sea) and the Bussol' Strait areas are characterized by the greatest concentrations of excess CO2 at isopycnal surfaces due to the processes of formation and transformation of intermediate water mass. (2) The largest difference in excess CO2 concentration between the Okhotsk Sea and the western subarctic Pacific (about 8 µmol/kg) is found at the = 27.0. (3) The difference in excess CO2 between the western subarctic Pacific and subtropical regions is significant only in the upper part of the intermediate water layer ( = 26.7–27.0). (4) About 10% of the excess CO2 accumulation in the subtropical north Pacific is determined by water exchange with the subarctic Pacific and the Okhotsk Sea.  相似文献   
7.
Two-dimensional temperature data observed by use of a 275 meter towed thermistor chain deployed from an oceanographic research vessel USS MARYSVILLE, which cruised with a speed of 6.2 knots in July 1966 across the Kuroshio Extension in the North Pacific, are investigated. Two-dimensional variations of the distribution of the isotherms along the ship's track are analyzed with special reference to their slope, wavelength and wave height. The results show that the slope and wave height of isotherms have a tendency to increase as the temperature decreases. Even if the contribution of wave heights smaller than 1.5 m is neglected, i.e., contribution of large scale slope with a horizontal scale of 5–30 km is subtracted, this tendency is still detected. In contrast to this, the wavelength evaluated by the crest to crest method has no dependency on the temperature. Power spectrum of the isotherm depth is proportional tok –1.87 for 13°C andk –2.13 for 27°C, wherek is the wave number. It is shown that the spectra of warmer isotherms are relatively well approximated by –2 power law (Garrett and Munk spectrum) for internal waves rather than the –5/3 power law (Kolmogorov spectrum) for three dimensional isotropic turbulence.  相似文献   
8.
We performed seismic waveform inversions and numerical landslide simulations of deep-seated landslides in Japan to understand the dynamic evolution of friction of the landslides. By comparing the forces obtained from a numerical simulation to those resolved from seismic waveform inversion, the coefficient of friction during sliding was well-constrained between 0.3 and 0.4 for landslides with volumes of 2–8 ×106 m3. We obtained similar coefficients of friction for landslides with similar scale and geology, and they are consistent with the empirical relationship between the volume and dynamic coefficient of friction obtained from the past studies. This hybrid method of the numerical simulation and seismic waveform inversion shows the possibility of reproducing or predicting the movement of a large-scale landslide. Our numerical simulation allows us to estimate the velocity distribution for each time step. The maximum velocity at the center of mass is 12–36 m/s and is proportional to the square root of the elevation change at the center of mass of the landslide body, which suggests that they can be estimated from the initial DEMs. About 20% of the total potential energy is transferred to the kinetic energy in our volume range. The combination of the seismic waveform inversion and the numerical simulation helps to obtain the well-constrained dynamic coefficients of friction and velocity distribution during sliding, which will be used in numerical models to estimate the hazard of potential landslides.  相似文献   
9.
We present a narrative of the eruptive events culminating in the cataclysmic January 15, 2022 eruption of Hunga Tonga-Hunga Ha'apai Volcano by synthesizing diverse preliminary seismic, volcanological, sound wave, and lightning data available within the first few weeks after the eruption occurred. The first hour of eruptive activity produced fast-propagating tsunami waves, long-period seismic waves, loud audible sound waves, infrasonic waves, exceptionally intense volcanic lightning and an unsteady volcanic plume that transiently reached—at 58 ?km—the Earth's mesosphere. Energetic seismic signals were recorded worldwide and the globally stacked seismogram showed episodic seismic events within the most intense periods of phreatoplinian activity, and they correlated well with the infrasound pressure waveform recorded in Fiji. Gravity wave signals were strong enough to be observed over the entire planet in just the first few hours, with some circling the Earth multiple times subsequently. These large-amplitude, long-wavelength atmospheric disturbances come from the Earth's atmosphere being forced by the magmatic mixture of tephra, melt and gasses emitted by the unsteady but quasi-continuous eruption from 0402±1–1800 UTC on January 15, 2022. Atmospheric forcing lasted much longer than rupturing from large earthquakes recorded on modern instruments, producing a type of shock wave that originated from the interaction between compressed air and ambient (wavy) sea surface. This scenario differs from conventional ideas of earthquake slip, landslides, or caldera collapse-generated tsunami waves because of the enormous (~1000x) volumetric change due to the supercritical nature of volatiles associated with the hot, volatile-rich phreatoplinian plume. The time series of plume altitude can be translated to volumetric discharge and mass flow rate. For an eruption duration of ~12 ?h, the eruptive volume and mass are estimated at 1.9 ?km3 and ~2 900 ?Tg, respectively, corresponding to a VEI of 5–6 for this event. The high frequency and intensity of lightning was enhanced by the production of fine ash due to magma—seawater interaction with concomitant high charge per unit mass and the high pre-eruptive concentration of dissolved volatiles. Analysis of lightning flash frequencies provides a rapid metric for plume activity and eruption magnitude. Many aspects of this eruption await further investigation by multidisciplinary teams. It represents a unique opportunity for fundamental research regarding the complex, non-linear behavior of high energetic volcanic eruptions and attendant phenomena, with critical implications for hazard mitigation, volcano forecasting, and first-response efforts in future disasters.  相似文献   
10.
Aoki  Toshiya  Katsura  Shin&#;ya  Koi  Takashi  Tanaka  Yasutaka  Yamada  Takashi 《Landslides》2022,19(8):1813-1824
Landslides - The 2018 Hokkaido Eastern Iburi Earthquake triggered numerous shallow landslides on slopes covered with thick pyroclastic-fall deposits. The landslides occurred more frequently on...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号