首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地球物理   2篇
地质学   5篇
海洋学   4篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2008年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有11条查询结果,搜索用时 234 毫秒
1.
The structure of the Mid-Atlantic Ridge at 5°S was investigated during a recent cruise with the FS Meteor. A major dextral transform fault (hereafter the 5°S FZ) offsets the ridge left-laterally by 80 km. Just south of the transform and to the west of the median valley, the inside corner (IC – the region bounded by the ridge and the active transform) is marked by a major massif, characterized by a corrugated upper surface. Fossil IC massifs can also be identified further to the west. Unusually, a massif almost as high as the IC massif also characterizes the outside corner (OC) south of the inactive fracture zone and to the east of the median valley. This OC massif has axis-parallel dimensions identical to the IC massif and both are bounded on their sides closest to the spreading axis by abrupt, steep slopes. An axial volcanic ridge is well developed in the median valley both south of the IC/OC massifs and in an abandoned rift valley to the east of the OC massif, but is absent along the new ridge-axis segment between the IC and OC massifs. Wide-angle seismic data show that between the massifs, the crust of the median valley thins markedly towards the FZ. These observations are consistent with the formation of the OC massif by the rifting of an IC core complex and the development of a new spreading centre between the IC and OC massifs. The split IC massif presents an opportunity to study the internal structure of the footwall of a detachment fault, from the corrugated fault surface to deeper beneath the fault, without recourse to drilling. Preliminary dredging recovered gabbros from the scarp slope of the rifted IC massif, and serpentinites and gabbros from the intersection of this scarp with the corrugated surface. This is compatible with a concentration of serpentinites along the detachment surface, even where the massif internally is largely plutonic in nature.  相似文献   
2.
Kopf  A.  Klaeschen  D.  Weinrebe  W.  Flueh  E.R.  Grevemeyer  I. 《Marine Geophysical Researches》2001,22(3):225-234
The Ninetyeast Ridge is a well-studied hot spot trail in the Indian Ocean. A recent geophysical survey in its central portion near 17° S included Hydrosweep bathymetric mapping, Parasound echosounder profiles, and high resolution seismic reflection data. These data reveal a number of small cones of a few hundreds of meters in diameter and up to 200 m height. Seismic evidence exists regarding a magmatic origin of these features. Different events of basaltic flow and tuff deposition intercalated with hemipelagic oozes of Eocene to present age, as being known from nearby drilling, allow dating of these latest stages of volcanic activity. An activity of at least 6 Ma longer than termination of the dominant constructional phase of the ridge can be demonstrated. These eruptions occur at shallow water depth, and seem to be related to tectonic lineaments in the area. Transtensional stresses together with a more durable magmatic source beneath this part of the ridge allow magma to ascend along pull-apart structures. The age discrepancy found calls for special attention when trying to reconstruct global plate motions. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
3.
The `plate tectonic mirror image' to the region of the Cocos and Nazca plates, which are currently being subducted beneath Central America, is preserved in the Central Pacific around 120°W just south of the equator. Cruise SO‐180 investigated this remote area during project CENTRAL and acquired new magnetic and bathymetric data. A plate tectonic model for the ‘mirror image’ is presented based on the newly acquired as well as reprocessed existing data. Discordant magnetic anomaly patterns and bathymetric structures indicate at least two major reorganization events (19.5 and 14.7 Myr), which can be detected both in the Cocos‐Nazca spreading system and in the East Pacific Rise. Irregularities in the anomaly pattern and curvilinear structures on the sea floor of the survey area are interpreted in terms of a fossil overlapping spreading centre at the location where the Farallon break‐up originated.  相似文献   
4.
Determining factors that limit coseismic rupture is important to evaluate the hazard of powerful subduction zone earthquakes such as the 2011 Tohoku‐Oki event (Mw = 9.0). In 1960 (Mw = 9.5) and 2010 (Mw = 8.8), Chile was hit by such powerful earthquakes, the boundary of which was the site of a giant submarine slope failure with chaotic debris subducted to seismogenic zone depth. Here, a continuous décollement is absent, whereas away from the slope failure, a continuous décollement is seismically imaged. We infer that underthrusting of inhomogeneous slide deposits prevents the development of a décollement, and thus the formation of a thin continuous slip zone necessary for earthquake rupture propagation. Thus, coseismic rupture during the 1960 and 2010 earthquakes seems to be limited by underthrusted upper plate mass‐wasting deposits. More generally, our results suggest that upper plate dynamics and resulting surface processes can play a key role for determining rupture size of subduction zone earthquakes.  相似文献   
5.
Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (?43 to ?56 ‰ PDB) than for mound samples (?22 to ?36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2–5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.  相似文献   
6.
During summer 1972 seismic studies were carried out along the Scandinavian “Blue Road” traverse between the Norwegian coast near the Arctic Circle and southern Finland. A set of several reversed and unreversed overlapping seismogram sections with a maximum length of about 600 km could be obtained, using eight shots at five different positions.Velocity models of the crust and upper mantle were computed, based on very clear arrivals of refracted P-waves. The crust—mantle boundary, which was mapped along the whole profile, shows only minor undulations with a mean depth of about 40 km. A root below the Caledonian mountain chain could not be found since recording distances were too short. A constant mantle velocity is derived, to depths of about 80 km, from parallel Pn-branches. Apart from the different geological structures near the surface, the overall distribution of seismic velocities appears to be very similar within the Caledonides and the Baltic Shield.  相似文献   
7.
Acoustic investigations of mud volcanoes in the Sorokin Trough, Black Sea   总被引:1,自引:0,他引:1  
The Sorokin Trough (Black Sea) is characterized by diapiric structures formed in a compressional tectonic regime that facilitate fluid migration to the seafloor. We present acoustic data in order to image details of mud volcanoes associated with the diapirs. Three types of mud volcanoes were distinguished: cone-shaped, flat-topped, and collapsed structures. All mud volcanoes, except for the Kazakov mud volcano, are located above shallow mud diapirs and diapiric ridges. Beyond the known near-surface occurrence of gas hydrates, bottom simulating reflectors are not seen on our seismic records, but pronounced lateral amplitude variations and bright spots may indicate the presence of gas hydrates and free gas.  相似文献   
8.
Meteor cruise M52/1 documented the presence of gas hydrates in sediments from mud volcanoes in the Sorokin Trough of the Black Sea. In a mud flow on the Odessa mud volcano, a carbonate crust currently forms in association with anaerobic methane oxidation. Dvurechenskii mud volcano (DMV), a flat-topped mud pie-type structure, appeared to be very active. Pore water in sediments of DMV is enriched in several constituents, such as ammonium and chloride, which seem to originate at depth. High sediment temperatures of up to 16.5 °C in close contact to the ambient bottom water of 9 °C also suggest strong advective transport of material from greater depth. Steep temperature gradients indicate a high fluid and/or mud flux within DMV, which is confirmed by the shape of the pore water profiles. Active fluid expulsion sites are evidenced by direct seafloor observation, and a potential flux of methane from the sediment to the bottom water is indicated by water-column methane measurements.  相似文献   
9.
The central Chilean subduction zone between 35°S and 37°S was investigated in order to identify, document and possibly understand fluid flow and fluid venting within the forearc region. Several areas were mapped using multibeam bathymetry and backscatter, high-resolution sidescan sonar, chirp subbottom profiling and reflection seismic data. On a subsequent cruise ground-truthing observations were made using a video sled. In general, this dataset shows surprisingly little evidence of fluid venting along the mid-slope region, in contrast to other subduction zones such as Central America and New Zealand. There were abundant indications of active and predominantly fossil fluid venting along the upper slope between 36.5°S and 36.8°S at the seaward margin of an intraslope basin. Here, backscatter anomalies suggest widespread authigenic carbonate deposits, likely the result of methane-rich fluid expulsion. There is unpublished evidence that these fluids are of biogenic origin and generated within the slope sediments, similar to other accretionary margins but in contrast to the erosional margin off Central America, where fluids have geochemical signals indicating an origin from the subducting plate.  相似文献   
10.
The deep seismic sounding project Blue Norma was carried out in the summer of 1977 in northern Scandinavia in order to investigate the deep structure of the Norwegian continental margin and the Caledonian mountain chain. During the measurements, by chance the core phase PKIKP of an earthquake at the New Hebrides was recorded with 30 seismic field stations along a profile through the central Caledonides. The results of the refraction seismic data, as obtained by a ray-tracing method, are presented and compared to the interpretation of the relative residuals of the PKIKP travel times. From both data sets a continentward down-dipping crust-mantle boundary is evaluated. From the interpretation of the refraction seismic measurements a crustal thickness of 32 km below the coastline and 42 km below the central mountain chain is obtained. The increase of the crustal thickness derived by the inversion of the travel-time residuals along this line amounts only to 6 km. This considerable discrepancy can only be explained by an eastward increasing seismic velocity in the mantle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号