首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   27篇
  国内免费   3篇
测绘学   44篇
大气科学   42篇
地球物理   139篇
地质学   198篇
海洋学   20篇
天文学   112篇
综合类   5篇
自然地理   69篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   22篇
  2014年   24篇
  2013年   50篇
  2012年   37篇
  2011年   21篇
  2010年   24篇
  2009年   39篇
  2008年   24篇
  2007年   30篇
  2006年   22篇
  2005年   32篇
  2004年   23篇
  2003年   19篇
  2002年   23篇
  2001年   16篇
  2000年   15篇
  1999年   10篇
  1998年   4篇
  1997年   6篇
  1996年   6篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   6篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   5篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有629条查询结果,搜索用时 15 毫秒
1.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   
2.
3.
4.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   
5.
Methodology and use of tensor invariants for satellite gravity gradiometry   总被引:2,自引:1,他引:1  
Although its use is widespread in several other scientific disciplines, the theory of tensor invariants is only marginally adopted in gravity field modeling. We aim to close this gap by developing and applying the invariants approach for geopotential recovery. Gravitational tensor invariants are deduced from products of second-order derivatives of the gravitational potential. The benefit of the method presented arises from its independence of the gradiometer instrument’s orientation in space. Thus, we refrain from the classical methods for satellite gravity gradiometry analysis, i.e., in terms of individual gravity gradients, in favor of the alternative invariants approach. The invariants approach requires a tailored processing strategy. Firstly, the non-linear functionals with regard to the potential series expansion in spherical harmonics necessitates the linearization and iterative solution of the resulting least-squares problem. From the computational point of view, efficient linearization by means of perturbation theory has been adopted. It only requires the computation of reference gravity gradients. Secondly, the deduced pseudo-observations are composed of all the gravitational tensor elements, all of which require a comparable level of accuracy. Additionally, implementation of the invariants method for large data sets is a challenging task. We show the fundamentals of tensor invariants theory adapted to satellite gradiometry. With regard to the GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite gradiometry mission, we demonstrate that the iterative parameter estimation process converges within only two iterations. Additionally, for the GOCE configuration, we show the invariants approach to be insensitive to the synthesis of unobserved gravity gradients.  相似文献   
6.
We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly, we investigate how convergence can be accelerated by means of both subspace and block-diagonal preconditioning. The efficiency of the latter dominates if the design matrix exhibits block-dominant structure. Secondly, we address Tikhonov-Phillips regularization in general. Thirdly, we demonstrate an effective implementation of the algorithm in a high-performance computing environment. In this context, an important issue is to avoid the twofold computation of the design matrix in each iteration. The computational platform is a 64-processor shared-memory supercomputer. The runtime results prove the successful parallelization of the LSQR solver. The numerical examples are chosen in view of the forthcoming satellite mission GOCE (Gravity field and steady-state Ocean Circulation Explorer). The closed-loop scenario covers 1 month of simulated data with 5 s sampling. We focus exclusively on the analysis of radial components of satellite accelerations and gravity gradients. Our extensions to the basic algorithm enable the method to be competitive with well-established inversion strategies in satellite geodesy, such as conjugate gradient methods or the brute-force approach. In its current development stage, the LSQR method appears ready to deal with real-data applications.  相似文献   
7.
Oliver K. Manuel 《Icarus》1980,41(2):312-315
Isotopically anomalous xenon in chondrites is closely associated with low-Z noble gases, but there is no helium (or neon) in the noble gas component with normal xenon. The correlation of elemental and isotopic heterogeneities in meteoritic noble gases places stringent limits on the origin of isotopically anomalous elements in meteorites and on the formation of the solar system.  相似文献   
8.
The Mossbauer spectra has been measured for the Leoville meteorite. Experimental results identify it as a type III carbonaceous meteorite. The spectrum shows the principle iron components to be olivine, magnetite, metallic iron, troilite and phyllosilicate material.  相似文献   
9.
B.M. Oliver 《Icarus》1975,25(2):360-367
Approximate expressions are derived for the number of civilizations within a few tens of light years of each other since intelligent life first evolved in the Galaxy. The number is proportional to the square of the usual selectivity factors and to the first power of the longevity. Arguments are presented for expecting intelligent life in certain multiple star systems, and the number of coexistent civilizations in such systems is estimated.  相似文献   
10.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号