首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   29篇
  国内免费   1篇
测绘学   6篇
大气科学   43篇
地球物理   74篇
地质学   160篇
海洋学   26篇
天文学   66篇
综合类   5篇
自然地理   30篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   15篇
  2017年   14篇
  2016年   15篇
  2015年   15篇
  2014年   12篇
  2013年   25篇
  2012年   15篇
  2011年   24篇
  2010年   23篇
  2009年   34篇
  2008年   22篇
  2007年   24篇
  2006年   20篇
  2005年   21篇
  2004年   16篇
  2003年   9篇
  2002年   11篇
  2001年   8篇
  2000年   11篇
  1999年   7篇
  1998年   2篇
  1997年   6篇
  1996年   4篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1959年   1篇
排序方式: 共有410条查询结果,搜索用时 15 毫秒
1.
In snowmelt-driven mountain watersheds, the hydrologic connectivity between meteoric waters and stream flow generation varies strongly with the season, reflecting variable connection to soil and groundwater storage within the watershed. This variable connectivity regulates how streamflow generation mechanisms transform the seasonal and elevational variation in oxygen and hydrogen isotopic composition (δ18O and δD) of meteoric precipitation. Thus, water isotopes in stream flow can signal immediate connectivity or more prolonged mixing, especially in high-relief mountainous catchments. We characterized δ18O and δD values in stream water along an elevational gradient in a mountain headwater catchment in southwestern Montana. Stream water isotopic compositions related most strongly to elevation between February and March, exhibiting higher δ18O and δD values with decreasing elevation. These elevational isotopic lapse rates likely reflect increased connection between stream flow and proximal snow-derived water sources heavily subject to elevational isotopic effects. These patterns disappeared during summer sampling, when consistently lower δ18O and δD values of stream water reflected contributions from snowmelt or colder rainfall, despite much higher δ18O and δD values expected in warmer seasonal rainfall. The consistently low isotopic values and absence of a trend with elevation during summer suggest lower connectivity between summer precipitation and stream flow generation as a consequence of drier soils and greater transpiration. As further evidence of intermittent seasonal connectivity between the stream and adjacent groundwaters, we observed a late-winter flush of nitrate into the stream at higher elevations, consistent with increased connection to accumulating mineralized nitrogen in riparian wetlands. This pattern was distinct from mid-summer patterns of nitrate loading at lower elevations that suggested heightened human recreational activity along the stream corridor. These observations provide insights linking stream flow generation and seasonal water storage in high elevation mountainous watersheds. Greater understanding of the connections between surface water, soil water and groundwater in these environments will help predict how the quality and quantity of mountain runoff will respond to changing climate and allow better informed water management decisions.  相似文献   
2.
We report on the petrography and mineralogy of five Yamato polymict eucrites to better constrain the formation and alteration of crustal material on differentiated asteroids. Each sample consists of different lithic clasts that altogether form four dominant textures and therefore appear to originate from closely related petrological areas within Vesta′s crust. The textures range from subophitic to brecciated, porphyritic, and quench‐textured, that differ from section to section. Comparison with literature data for these samples is therefore difficult, which stresses that polymict eucrites are extremely complex in their petrography and investigation of only one thick section may not be representative for the host rock. We also show that sample Y‐793548 consists of more than one lithic unit and must therefore be classified as polymict instead of monomict. The variety and nature of lithic textures in the investigated Yamato meteorites indicate shock events, intense post‐magmatic thermal annealing, and secondary alteration. These postmagmatic features occur in different intensities, varying from clast to clast or among coexisting mineral fragments on a small, local scale. Several clasts within the eucrites studied have been modified by late‐stage alteration processes that caused deposition of Fe‐rich olivine and Fe enrichment along cracks crosscutting pyroxene crystals. However, formation of these secondary phases seems to be independent of the degree of thermal metamorphism observed within every type of clast, which would support a late‐stage metasomatism model for their formation.  相似文献   
3.
Abstract— A whole rock sample from the H3 chondrite Sainte Rose, which was discovered in 1983, was dated with the 40Ar-39Ar technique. From the K/Ca spectrum and from an analysis of the 39Ar recoil effect we conclude that this meteorite has at least two distinguishable K-carriers: a low temperature, high-K/Ca, fine-grained carrier with a typical grain size of about 2 μm and a high temperature, low-K/Ca, more coarse-grained carrier. The K-Ar clocks of both were started 4.40 ± 0.01 Ga ago.  相似文献   
4.
The aim of this research project is to identify, characterize and quantify natural attenuation (NA) processes in groundwater affected by emissions of abandoned waste disposal sites in Berlin-Kladow/Gatow, Germany. It is part of the funding priority called KORA established by the Federal Ministry for Education and Research (BMBF) to explore the extent to which NA can be used for remedial purposes for varied forms of soil and groundwater contamination. Information on the emission behaviour of individual parameters is generated on the basis of hydrogeochemical comparison of 20 years old and new data. Using groundwater-modelling and CFC-analysis, information on the transport and retention of pollutants in groundwater is compiled. The microbial colonization of contaminated aquifers is characterized by molecular biological methods [polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE)] to differentiate between contaminated and not contaminated zones.  相似文献   
5.
Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic–anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π* resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ* region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent with aromatic-ring cleavage and polymerization. These results further substantiate that the presence of catechol, O2 (aq) causes both the oxidation of structural Ce3+ and the transformation of catechol to more complex organic molecules. Scanning Transmission X-Ray Microscopy measurements at the C K and Ce M4,5 edges indicate three dominant organic species, varying in complexity and association with the inorganic phase. Untransformed catechol is loosely associated with CeO2, whereas more complex organic molecules that exhibit lower aromaticity and stronger CO π* resonances of carboxyl-C and carbonyl-C groups are only found in association with the grains. These results further serve as basis to postulate that, in the presence of O2, CeO2 can mediate the oxidative polymerization of catechol to form higher molecular weight polymers. The present work provides evidence for a pathway of biologically-induced, non-enzymatic oxidation of cerium and formation of small CeO2 particles at room temperature. These findings may have implications for carbon cycling in natural and cerium-contaminated soils and aqueous environments.  相似文献   
6.
Knowledge of the defect properties of Lunar and Mercurian minerals has recently become important, with the advent of models which attempt to explain the formation of the thin exosphere of these celestial bodies. Here, we have calculated the formation energies of sodium and oxygen vacancies in the mineral albite (NaAlSi3O8), as well as the Schottky defect energy for the removal of a Na2O unit. We have employed both the supercell and Mott–Littleton approaches, using Kohn–Sham density functional theory and classical interatomic potential methods. As well as reporting the defect energies and structures, we comment upon the relative merits of the methods used.  相似文献   
7.
Several years of continuous physical and biological anomalies have been affecting the Bering Sea shelf ecosystem starting from 1997. Such anomalies reached their peak in a striking visual phenomenon: the first appearance in the area of bright waters caused by massive blooms of the coccolithophore Emiliania huxleyi (E. huxleyi). This study is intended to provide an insight into the mechanisms of phytoplankton succession in the south-eastern part of the shelf during such years and addresses the causes of E. huxleyi success by means of a 2-layer ecosystem model, field data and satellite-derived information. A number of potential hypotheses are delineated based on observations conducted in the area and on previous knowledge of E. huxleyi general ecology. Some of these hypotheses are then considered as causative factors and explored with the model. The unusual climatic conditions of 1997 resulted most notably in a particularly shallow mixed layer depth and high sea surface temperature (about 4 °C above climatological mean). Despite the fact that the model could not reproduce for E. huxleyi a clear non-bloom to bloom transition (pre- vs. post-1997), several tests suggest that this species was favoured by the shallow mixed layer depth in conjunction with a lack of photoinhibition. A top-down control by microzooplankton selectively grazing phytoplankton other than E. huxleyi appears to be responsible for the long persistence of the blooms. Interestingly, observations reveal that the high N:P ratio hypothesis, regarded as crucial in the formation of blooms of this species in previous studies, does not hold on the Bering Sea shelf.  相似文献   
8.
A study of suspended sediment concentration in the buoyant plume of the Fraser River, Canada, showed that unstratified flow conditions at the river mouth caused resuspension of sandy bed material and high concentrations of coarse sediment. When flow at the mouth was stratified, sediment was fine-grained and concentrations were low. Application of a multivariate model revealed that suspended sediment concentration along the plume axis was controlled primarily by distance seaward of the river mouth, secondly by tidal height, and least by sediment concentration in the river.  相似文献   
9.
10.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号