首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   1篇
  国内免费   4篇
大气科学   8篇
地球物理   13篇
地质学   26篇
海洋学   3篇
天文学   20篇
综合类   2篇
自然地理   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   7篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1974年   2篇
排序方式: 共有73条查询结果,搜索用时 15 毫秒
1.
Icefish populations continue to decline. Historical as well as current over-exploitations of stocks aggravated by climate change are frequently seen as res  相似文献   
2.
A Lower Carboniferous platform sedimentary sequence (the Paprotnia Beds) in the Bardo Unit of the central Sudetes (NE part of the Bohemian Massif, SW Poland) is biostratigraphically well dated, based on rich macro- and micro-fossil evidence, as Late Viséan (late Asbian, crenistria, Go III α zone). The beds contain several bentonite layers, one of which was dated using the U–Pb SHRIMP method on volcanic zircons and yielded an age of 334 ± 3 Ma. This date fits well to the recently established chronostratigraphic limits of the Viséan, and is consistent with the newest isotopic age constraints of 336.5–332 Ma for the Asbian boundaries.  相似文献   
3.
Abstract— Calculations of the formation of seven types of chondrules in Semarkona from a gas of solar composition were performed with the FACT computer program to predict the chemistries of oxides (including silicates), developed by the authors and their colleagues. The constrained equilibrium theory was used in the calculations with two nucleation constraints suggested by nucleation theory. The first constraint was the blocking of Fe and other metal gaseous atoms from condensing to form solids or liquids because of very high surface free energies and high surface tensions of the solid and liquid metals, respectively. The second constraint was the blocking of the condensation of solids and the formation of metastable liquid oxides (including silicates) well below their liquidus temperatures. Our laboratory experiments suggested subcooling of type IIA chondrule compositions of 400 degrees or more below the liquidus temperature. The blocking of iron leads to a supersaturation of Fe atoms, so that the partial pressure of Fe (pFe) is larger than the partial pressure at equilibrium (pFe(eq)). The supersaturation ratio S = pFe/pFe(eq) becomes larger than 1 and increases rapidly with a decrease in temperature. This drives the reaction Fe + H2O ? H2 + FeO to the right. With S = 100, the activity of FeO in the liquid droplet is 100 times as large as the value at equilibrium. The FeO activities are a function of temperature and provide relative average temperatures of the crystallization of chondrules. Our calculations for the LL3.0 chondrite Semarkona and our study of some non‐equilibrium effects lead to accurate representations of the compositions of chondrules of types IA, IAB, IB, IIA, IIAB, IIB, and CC. Our concepts readily explain both the variety of FeO concentrations in the different chondrule types and the entire process of chondrule formation. Our theory is unified and could possibly explain the formation of chondrules in all chondritic meteorites as well as provide a simple explanation for the complex chemistries of chondrites, and especially for type 3 chondrites.  相似文献   
4.
Abstract— We review the petrology of Baszkówka, present new microprobe data on mineral constituents, and propose a model for surface properties of the parent body consistent with these data. The low shock index and high porosity of the Baszkówka L5 chondrite mean that considerable primary textural and petrographic detail is preserved, allowing insight into the structure and evolution of the parent body. This meteorite formed in a sedimentary environment resembling that in which pyroclastic rocks are deposited. The origin of the component chondrules, achondritic fragments (mostly olivine and pyroxene aggregates), chondritic‐achondritic aggregates, and compound chondrules can be explained by invoking collision of 2 melted or partially melted planetesimals, each covered with a thin crust. This could have happened at an early stage in the evolution of the solar system, between 1 and 2 Myr after its origin. The collision resulted in the formation of a cloud containing products of earlier magmatic crystallization (chondrite and achondrite fragments) from which new chondrules were created. Particle collision in this cloud produced fragmented chondrules, chondritic‐achondritic aggregates, and compound chondrules. Within this low‐density medium, these particles were accreted on the surface of the larger of the planetesimals involved in the collision. The density of the medium was low enough to prevent grain‐size sorting of the components but high enough to prevent the total loss of heat and to enable the welding of fragments on the surface of the body. The rock material was homogenized within the cloud and, in particular, within the zone close to the planetesimal surface. The hot material settled on the surface and became welded as molten or plastic metal, and sulfide components cemented the grains together. The process resembled the formation of welded ignimbrites. Once these processes on the planetesimal surface were completed, no subsequent recrystallization occurred. The high porosity of the Baszkówka chondrite indicates that the meteorite comes from a near‐surface part of the parent body. Deeper parts of the planetesimal would have been more massive because of compaction.  相似文献   
5.
The silicate carbon star V778 Cyg is a source of 22-GHz water maser emission which was recently resolved by MERLIN. Observations revealed an elongated     -like structure along which the velocities of the maser features show a linear dependence on the impact parameter. This is consistent with a doubly warped   m = 2  disc observed edge-on. Water masers and silicate dust emission (detected by the Infrared Astronomical Satellite and Infrared Space Observatory ) have a common origin in O-rich material and are likely to be co-located in the disc. We propose a detailed self-consistent model of a masing gas–dust disc around a companion to the carbon star in a binary system, which allows us to estimate the companion mass of  1.7 ± 0.1 M  , the disc radius of  40 ± 3  au and the distance between companions of ∼80 au. Using a dust–gas coupling model for water masing, we calculate the maser power self-consistently, accounting for both the gas and the dust energy balances. Comparing the simulation results with the observational data, we deduce the main physical parameters of the masing disc, such as the gas and dust temperatures and their densities. We also present an analysis of the stability of the disc.  相似文献   
6.
Abstract— Weathering effects on meteorite finds from the Acfer region were studied by various analytical techniques and in dependence on the depth of sampling. In thin sections of weathered meteorites, weathering effects usually decrease from the outside to the interior of the meteorite. The results of evolved gas analysis indicate that variation in weathering between surface and core is not significant in respect to the formation of Fe-oxyhydroxides. The secondary alteration effects in the noble gases are distributed unevenly throughout the specimens, as seen in the nonsystematic differences observed for the heavy noble gases. Chemical analyses show significant enrichment of Ba and Sr in the outer parts of the weathered samples due to element contamination through aqueous solution. Iron, Ni, and Co are partly flushed from the system as the metal oxidation proceeds. Oxygen isotopes show increases in δ18O and δ17O with increasing terrestrial age. For a set of H3 chondrites, the degree of weathering determined from the water content was correlated with terrestrial ages and is discussed with respect to possible weathering mechanisms.  相似文献   
7.
Abstract— Lunar meteorite Dar al Gani 262 (DG 262)—found in the Libyan part of the Sahara—is a mature, anorthositic regolith breccia with highland affinities. The origin from the Moon is undoubtedly indicated by its bulk chemical composition; radionuclide concentrations; noble gas, N, and O isotopic compositions; and petrographic features. Dar al Gani 262 is a typical anorthositic highland breccia similar in mineralogy and chemical composition to Queen Alexandra Range (QUE) 93069. About 52 vol% of the studied thin sections of Dar al Gani 262 consist of fine-grained(100 μm) constituents, and 48 vol% is mineral and lithic clasts and impact-melt veins. The most abundant clast types are feldspathic fine-grained to microporphyritic crystalline melt breccias (50.2 vol%; includes recrystallized melt breccias), whereas mafic crystalline melt breccias are extremely rare (1.4 vol%). Granulitic lithologies are 12.8 vol%, intragranularly recrystallized anorthosites and cataclastic anorthosites are 8.8 and 8.2 vol%, respectively, and (devitrified) glasses are 2.7 vol%. Impact-melt veins (5.5 vol% of the whole thin sections) cutting across the entire thin section were probably formed subsequent to the lithification process of the bulk rock at pressures below 20 GPa, because the bulk rock never experienced a higher peak shock pressure. Mafic crystalline melt breccias are very rare in Dar al Gani 262 and are similar in abundance to those in QUE 93069. The extremely low abundance of mafic components and the bulk composition may constrain possible areas of the Moon from which the breccia was derived. The source area of Dar al Gani 262 must be a highland terrain lacking significant mafic impact melts or mare components. On the basis of radionuclide activities, an irradiation position of DG 262 on the Moon at a depth of 55–85 g/cm3and a maximum transit time to Earth <0.15 Ma is suggested. Dar al Gani 262 contains high concentrations of solar-wind-implanted noble gases. The isotopic abundance ratio 40Ar/36Ar < 3 is characteristic of lunar soils. The terrestrial weathering of DG 262 is reflected by the occurrence of fractures filled with calcite and by high concentrations of Ca, Ba, Cs, Br, and As. There is also a large amount of terrestrial C and some N in the sample, which was released at low temperatures during stepped heating. High concentrations of Ni, Co, and Ir indicate a significant meteoritic component in the lunar surface regolith from which DG 262 was derived.  相似文献   
8.
This is a critical assessment of the paper by Oszczypko et al. (2004: Cretaceous Research 25, 89–113), in which they tried to prove a mid-Cretaceous age for the Szlachtowa (“black flysch”) and Opaleniec Formations, in the Pieniny Klippen Belt, West Carpathians, both of which had previously been shown to be of Jurassic age. We argue that the mid-Cretaceous age assignment is a misinterpretation, primarily resulting from their field samples having been collected from some Cretaceous lithostratigraphic units, tectonically associated with the Jurassic formations, and/or from tectonic contact-breccias involving Jurassic and Cretaceous strata. In addition, we suggest that they have overlooked a number of significant palaeontological papers, published since 1962, which record the presence of in situ ammonites, aptychi, belemnites, thin-shelled bivalves (Bositra), gryphaeids, foraminifera, and ostracod assemblages, all indicating a Jurassic (mainly Aalenian), and not a Cretaceous, age for the Szlachtowa Formation, and also the in situ Jurassic (Bajocian) ammonites and thin-shelled bivalves (Bositra), Bositra-microfacies, and age-diagnostic foraminiferal assemblages of the Opaleniec Formation.Our presentation here of recently published dinocyst data from well-preserved assemblages further supports the Jurassic ages for the Szlachtowa (“black flysch”) and Opaleniec Formations.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号