首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地质学   1篇
自然地理   10篇
  2014年   1篇
  2012年   2篇
  2011年   3篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有11条查询结果,搜索用时 140 毫秒
1.
中国区域土地利用/覆被变化对陆地碳收支的影响   总被引:2,自引:0,他引:2  
准确估计土地利用/覆被变化(LUCC)对陆地生态系统碳收支的影响已成为当前全球变化和全球碳循环研究的重点内容。本文通过文献调研和数据的整合分析方法总结讨论了近年来中国区域LUCC时空特征及其对陆地碳收支影响,为合理评价中国区域陆地碳平衡以及确定未来研究发展方向提供参考。已有大量研究对近年来中国区域LUCC主要特征进行了探讨,并分别利用卫星遥感方法和IPCC清单法对中国区域陆地碳源汇影响进行了评估。结果表明,目前全国土地利用活动,特别是农林活动正对陆地生态系统碳收支产生了比较显著的积极作用,但基于以上两种方法的研究结论之间差异很大,反映出中国LUCC导致陆地碳收支变化的评估结果仍存在着较大的不确定性。通过分析认为,中国未来的研究工作应着重于发展和利用基于土地利用相互转化面积的计量方法,以提高对中国区域LUCC导致陆地碳收支变化评估的准确性。  相似文献   
2.
陆地生态系统碳循环、氮循环和水循环是生态系统生态学和全球变化科学研究长期被关注的三大物质循环,它们表征着全球、区域及典型生态系统的能量流动、养分循环和水循环。然而,自然界的生态系统碳循环、氮循环和水循环是相互联动、不可分割的耦合体系,在生态学、生理学、生物化学等方面受多个生物、物理、化学和生物学过程的调节和控制。本文在综合论述陆地生态系统碳-氮-水耦合循环研究的理论和实践意义的基础上,探讨了陆地生态系统碳-氮-水耦合循环的关键过程,提出该研究领域的基本科学问题,重点分析了植被-大气、土壤-大气和根系-土壤3个界面上碳、氮、水交换的生物物理过程,典型生态系统碳-氮-水耦合循环的生物学化学过程,制约典型生态系统碳-氮-水循环耦合关系的生态系统生态学机制,以及制约生态系统碳-氮-水循环空间格局耦联关系的生物地理生态学机制。在现有科学研究的基础上,构建了陆地生态系统碳-氮-水耦合循环机制的逻辑框架系统,讨论了开展陆地生态系统碳-氮-水耦合循环研究的主要技术途径与方法。  相似文献   
3.
20年来部分黑土耕层有机质和全氮含量的变化   总被引:20,自引:2,他引:20  
黑土有机质含量的变化一直倍受社会关注.根据第二次全国土壤普查的采样记录,2001年在吉林省黑土区采集了27个土壤样品,分析测定了耕层土壤(深度与第二次土普数据相同)的有机质和全氮含量.与第二次土普查数据对比发现,过去20年间,吉林省黑土土壤有机质和全氮含量有增有减,但平均水平无明显变化.与已有的研究对比分析,高产玉米生产条件下的根系碳输入量可能抵消矿化损失的有机质量,使水土流失不严重区域的黑土土壤有机质水平维持平衡,有机质含量下降的土壤可能是水土流失的结果.而在水土流失不严重地区土壤有机质则可能增加.  相似文献   
4.
森林土壤碳、氮淋失过程及其 形成机制研究进展   总被引:6,自引:0,他引:6  
大气氮沉降对森林生态系统碳截存和损耗过程的影响已引起广泛关注, 但对沉降氮在森 林生态系统中的去向、增氮对土壤中碳/氮转化过程的影响以及土壤氮饱和前后土壤渗漏液中溶 解性有机碳(DOC) 和溶解性有机氮(DON) 动态等方面的研究还不够深入。本文论述了近年来国 内外在土壤氮饱和及土壤碳、氮淋溶领域的最新研究进展, 从系统论的角度阐述土壤氮饱和过程 及内涵; 通过论述DOC 和DON 含量及其结构组成变化来揭示其对增氮/氮沉降的内在响应机 理; 论述了增氮对土壤无机氮转化的影响以及生物和非生物因素对沉降氮固持的贡献。指出土壤 氮饱和为土壤中的有效氮随时间增加超过了土壤中生物和非生物的持留能力, 导致土壤氮的净 矿化、净硝化、NO3-流失以及土壤酸化等过程发生一系列非线性变化。初步认为土壤中DOC 和 DON 对增氮的不同响应归因于氮素饱和过程的三个不同阶段。对于特定的生态系统来说, 需要 清楚地认识土壤氮素矿化、硝化、反硝化和固持等过程, 才能明晰土壤氮素状态以及随时间的演 变。另外, 指出在上述三个研究领域中存在的问题, 并提出拟解决的途径以及未来的可能研究方 向, 以期对该领域的研究提供参考。  相似文献   
5.
农业土壤固碳对缓解全球变暖的意义   总被引:39,自引:4,他引:39  
大气CO2浓度急剧升高引起的全球气候变暖是人们关注的环境问题之一。以美国和加拿大为代表的发达国家正在热衷于研究农业土壤作为大气CO2的“汇”。文章评述了这一领域研究的现状,认为中国农业土壤固碳潜力较美加两国要大。加强农业土壤碳“汇”的研究不仅有助于恢复中国退化中的土壤肥力,同时也有 地在未来的温室效应气体控制谈判中保护中国发展中的工业。  相似文献   
6.
From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). Based on these samples, we studied the geographical distribution patterns of vegetable water use efficiency (WUE) and nitrogen use efficiency (NUE), and analyzed their relationship with environmental factors. The vegetable WUE and NUE were calculated through the measurement of foliar δ 13C and C/N of predominant species, respectively. The results showed: (1) vegetable WUE, ranging from 2.13 to 28.67 mg C g-1 H2O, increased linearly from south to north in the representative forest ecosystems along the NSTEC, while vegetable NUE showed an opposite trend, increasing from north to south, ranging from 12.92 to 29.60 g C g-1 N. (2) Vegetable WUE and NUE were dominantly driven by climate and significantly affected by soil nutrient factors. Based on multiple stepwise regression analysis, mean annual temperature, soil phosphorus concentration, and soil nitrogen concentration were responding for 75.5% of the variations of WUE (p<0.001). While, mean annual precipitation and soil phosphorus concentration could explain 65.7% of the change in vegetable NUE (p<0.001). Moreover, vegetable WUE and NUE would also be seriously influenced by atmospheric nitrogen deposition in nitrogen saturated ecosystems. (3) There was a significant trade-off relationship between vegetable WUE and NUE in the typical forest ecosystems along the NSTEC (p<0.001), indicating a balanced strategy for vegetation in resource utilization in natural forest ecosystems along the NSTEC. This study suggests that global change would impact the resource use efficiency of forest ecosystems. However, vegetation could adapt to those changes by increasing the use efficiency of shortage resource while decreasing the relatively ample one. But extreme impacts, such as heavy nitrogen deposition, would break this trade-off mechanism and give a dramatic disturbance to the ecosystem biogeochemical cycle.  相似文献   
7.
对重要干扰过程导致森林植被向大气中的碳排放量进行评估,对于合理评估森林碳汇功能及其在应对全球气候变化中的作用是有重要意义的。本文基于有关森林干扰发生情况的林业统计资料和有关干扰引起生物量C转移过程与比例的假设条件,估算了近20年来采伐、火灾与病虫鼠害三种主要干扰每年从森林植被直接排放到大气中的C量。结果表明,近20年来,中国森林遭受了比较强烈的采伐、火灾与病虫鼠害干扰,并且这三种干扰在进入21世纪后有着比较明显的增加趋势。相应地,在1990-2009年间,采伐、火灾与病虫鼠害的C排放量年均分别为3425.16万tC、161.29万tC、428.80万tC,合计为4015.24万t。三种干扰的总C排放量在1990-1999年间年均为3079.40万t,在2000-2009年间年均为4951.09万t。从不同森林类型分布区的排放来看,中国森林主要干扰的年均C排放量及其年代际变化呈现比较明显的区域特征。干扰对中国森林碳平衡有着重大影响,针对干扰的森林管理可能具有较大的增汇潜力,并且在未来有关森林与陆地生态系统碳收支的模型研究中需考虑主要干扰的影响。  相似文献   
8.
土壤侵蚀对农田中土壤有机碳的影响   总被引:10,自引:2,他引:10  
碳主要在通气状态下释放出CO2以温室效应的形式影响全球变化.当前,农田土壤固碳过程是土壤碳循环研究中的一个前沿领域,其中农田土壤再分布过程能否导致土壤固碳已引起科学上、政治上以及社会上广泛的兴趣.本文从不同的尺度阐述土壤再分布过程对土壤有机碳的影响.分别阐述土壤侵蚀和再沉积过程在全球碳循环,陆地碳库研究中的作用,土壤侵蚀与农田景观土壤有机碳动态、活性组份以及碳通量之间的关系,土壤再分布过程引起的土壤固碳机理.在此基础上指出今后迫切需要解决的问题.  相似文献   
9.
陆地生态系统碳收支及其循环过程机制研究一直是全球气候变化的成因分析、变化趋势预测、减缓和适应对策分析等领域的热点,受到科技界和国际社会的广泛关注。本文在简要回顾中国陆地生态系统碳收支及其循环过程研究领域的发展历史,总结各个发展阶段主要特征的基础上,讨论了开展中国区域陆地生态系统碳收支综合研究的科技需求和社会需求,评述了中国在相关领域研究中存在的主要问题,探讨了当前的科学研究前沿领域及其关键科学问题。本文指出,现阶段中国开展区域尺度陆地生态系统碳收支及其循环过程机制综合研究工作不仅是提升中国生态系统生态学、地球系统科学与全球变化科学的创新能力的科技发展需求,更是中国参与应对全球气候变化国际合作、改进生态系统管理、保障生态安全的社会经济发展需求。同时还指出,中国现阶段在该领域的研究工作还缺乏各类生态系统碳收支的实际调查数据,缺乏国家尺度碳收支科学数据的整合,缺乏可用于碳收支计量与综合评估的模型工具,也没有形成国家层次的碳源汇计量、评估、认证及决策分析信息系统平台。本文通过国内外科技发展的分析认为,中国在该领域的研究工作,应在大力发展陆地生态系统碳收支和碳汇功能的定量监测、评价和认证的方法与技术基础上,重点关注并前瞻性地开展陆地生态系统碳-氮-水循环过程耦合关系及其对全球气候变化的响应与适应、碳-氮-磷生态化学计量学特征及其环境影响、碳-氮-水耦合循环过程的生物调控机制等前沿领域,以提高中国生态系统与全球变化科学研究水平,为国家的生态系统与温室气体管理提供基础理论、科学知识和先进技术的储备。  相似文献   
10.
土壤粗有机质的研究进展   总被引:2,自引:0,他引:2  
土壤粗有机质是土壤中较为活跃的组分, 其密度组分对土壤有机质总矿化量有着重要贡 献, 可以作为评价管理措施转变引起土壤有机质短期变化的敏感性指标。分别介绍了按照不同的 物理分组方法划分的土壤有机质各物理组分的概念、土壤粗有机质及其分离方法, 探讨了影响土 壤粗有机质数量的主要因素( 管理措施、土地利用方式、土壤质地和气候条件) 和当前在研究土壤 粗有机质过程中存在的问题: ( 1) 各影响因素引起的土壤有机质变化的机制还不确定; ( 2) 土壤粗 有机质的分离方法还有待深入研究; ( 3) 粗有机质对土壤有机氮矿化的贡献认识还存在分歧。指 出探求更好的土壤粗有机质的分离方法和粗有机质对各影响因素的响应机制, 揭示土壤粗有机 质对土壤氮矿化的贡献是今后的主要研究方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号