首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地球物理   1篇
天文学   1篇
  2001年   1篇
  1978年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
Continuous temperature logs to depths between 750 and 1400 m in the Transylvanian Basin, Romania, in many cases show temperature gradient variations with depth which cannot be explained by depth variations in thermal conductivity, topography and ground water flow. The only possible responsible agent seems to be past surface temperature variations. The temperature logs from nine boreholes have been interpreted individually and jointly by least squares inverse modelling with the surface temperature history and background heat flux as unknown parameters. All the temperature profiles are consistent with a temperature rise at the end of the last glaciation. The effects of borehole depth, of a wrong choice of thermal conductivity, and the level of uncorrelated random noise were examined using synthetic examples.  相似文献   
2.
Heat flow values of 33–58 mW m–2 were found for the Transylvanian Depression, 45–57 mW m–2 for the crystalline nucleus of the Eastern Carpathians, and 70–120 mW m–2 for the Neogene volcanic area. Temperature-depth profile and some geophysical implications of the low values for the Transylvanian Depression are discussed, rendering evident clear-cut differences between this tectonic unit and other Noegene depressions. The heat flow values for the other two investigated tectonic units are usual ones for areas of their age.A preliminary map of the heat flow distribution over the Romanian territory is presented and its relation to other geophysical fields is discussed. A positive correlation was found between gravity and heat flow, and a negative one between crustal thickness and heat flow. A general conclusion could be drawn that the heat flow distribution over the Romanian territory seems to be governed by processes taking place in the upper mantle, rather than by the radioactive decay within the crust.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号