首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   21篇
  国内免费   2篇
测绘学   14篇
大气科学   18篇
地球物理   69篇
地质学   71篇
海洋学   51篇
天文学   53篇
综合类   3篇
自然地理   22篇
  2022年   3篇
  2021年   4篇
  2020年   10篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   17篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   11篇
  2011年   10篇
  2010年   8篇
  2009年   15篇
  2008年   17篇
  2007年   9篇
  2006年   7篇
  2005年   5篇
  2004年   7篇
  2003年   9篇
  2002年   9篇
  2001年   11篇
  2000年   8篇
  1999年   10篇
  1998年   6篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1992年   4篇
  1991年   7篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1972年   2篇
  1968年   1篇
  1966年   2篇
  1964年   1篇
排序方式: 共有301条查询结果,搜索用时 281 毫秒
1.
2.
3.
The ridge located between 31° S and 34°30′S is spreading at a rate of 35 mm yr−1, a transitional velocity between the very slow (≤20 mm yr−1) opening rates of the North Atlantic and Southwest Indian Oceans, and the intermediate rates (60 mm yr−1) of the northern limb of the East Pacific Rise, and the Galapagos and Juan de Fuca Ridges. A synthesis of multi-narrow beam, magnetics and gravity data document that in this area the ridge represents a dynamically evolving system. Here the ridge is partitioned into an ensemble of six distinct segments of variable lengths (12 to 100 km) by two transform faults (first-order discontinuities) and three small offset (< 30 km) discontinuities (second-order discontinuities) that behave non-rigidly creating complex and heterogeneous morphotectonic patterns that are not parallel to flow lines. The offset magnitudes of both the first and second-order discontinuities change in response to differential asymmetric spreading. In addition, along the fossil trace of second-order discontinuities, the lengths of abyssal hills located to either side of a discordant zone are observed to lengthen and shorten creating a saw-toothed pattern. Although the spreading rate remains the same along the length of the ridge studied, the morphology of the spreading segments varies from a deep median valley with characteristics analogous to the rift segments of the North Atlantic to a gently rifted axial bulge that is indistinguishable from the shape and relief of the intermediate rate spreading centers of the East Pacific Rise (i.e., 21°N). Like other carefully surveyed ridge segments at slow and fast rates of accretion, the along-axis profiles of each ridge segment are distinctly convex upwards, and exhibit along-strike changes in relief of 500m to 1500 between the shallowest portion of the segment (approximate center) and the segment ends. Such spatial variations create marked along-axis changes in the morphology and relief of each segment. A relatively low mantle Bouguer anomaly is known to be associated with the ridge segment characterized by a gently rifted axial bulge and is interpreted to indicate the presence of focused mantle upwelling (Kuo and Forsyth, 1988). Moreover, the terrain at the ends of each segment are known to be highly magnetized compared to the centers of each segment (Carbotte et al, 1990). Taken together, these data clearly establish that these profound spatial variations in ridge segment properties between adjoining segments, and along and across each segment, indicate that the upper mantle processes responsible for the formation of this contrasting architecture are not solely related to passive upwelling of the asthenosphere beneath the ridge axis. Rather, there must be differences in the thermal and mechanical structure of the crust and upper mantle between and along the ridge segments to explain these spatial variations in axial topography, crustal structure and magnetization. These results are consistent with the results of investigations from other parts of the ridge and suggest that the emplacement of magma is highly focused along segments and positioned beneath the depth minimum of a given segment. The profound differences between segments indicate that the processes governing the behavior of upwelling mantle are decoupled and the variations in the patterns of axis flanking morphology and rate of accretion indicate that processes controlling upwelling and melt production vary markedly in time as well. At this spreading rate and in this area, the accretionary processes are clearly three-dimensional. In addition, the morphology of a ridge segment is not governed so much by opening rate as by the thermal structure of the mantle which underlies the segment.  相似文献   
4.
Abstract. In situ feeding habits of the cyclopoid copepods Oncaea venusta, Corycaeus amazonicus, Oithona plumifera , and O. simplex were investigated by scanning electron microscope examination of fecal pellets, the contents of which reflected copepod gut contents upon capture. Peilet contents were compared with assemblages of phytoplankton present in surface waters at times of copepod collection. All samples were from the northern Gulf of Mexico. All four copepods fed upon phytoplankton and O. venusta also ingested other crustaceans. Dominant components of fecal pellets generally did not mirror those of available phytoplankton assemblages. In some cases, O. venusta ingested primarily larger-sized particles even when these were not most abundant, and in other cases it did not ingest large cells even when they were present in bloom concentrations. The presence of small (< 2–5 urn diameter) centric diatoms in O. venusta pellets suggests the possibility of feeding by mechanisms other than suspension or raptorial feeding. Limited observations suggest that C. amazonicus and O. plumifera may feed raptorially on larger particles even when these are not particularly abundant, and that the small O. simplex (< 500 nm total length) feeds mainly upon nanoplankton. It appears that cyclopoid feeding mechanisms are complex, and likely more so than those of many calanoids.  相似文献   
5.
Morphologic studies of an oceanic transform, the Blanco Transform Fault Zone (BTFZ), have shown it to consist of a series of extensional basins that offset the major strike-slip faults. The largest of the extensional basins, the Cascadia Depression, effectively divides the transform into a northwest segment, composed of several relatively short strike-slip faults, and a southeast segment dominated by fewer, longer faults. The regional seismicity distribution (m b 4.0) and frequency-magnitude relationships (b-values) of the BTFZ show that the largest magnitude events are located on the southeast segment. Furthermore, estimates of the cumulative seismic moment release and seismic moment release rate along the southeast segment are significantly greater than that of the northwest segment. These observations suggest that slip along the southeast segment is accommodated by a greater number of large magnitude earthquakes. Comparison of the seismic moment rate, derived from empirical estimates, with the seismic moment rate determined from plate motion constraints suggests a difference in the seismic coupling strength between the segments. This difference in coupling may partially explain the disparity in earthquake size distribution. However, the results appear to confirm the relation between earthquake size and fault length, observed along continental strike-slip faults, for this oceanic transform.  相似文献   
6.
Gallo  D. G.  Kidd  W. S. F.  Fox  P. J.  Karson  J. A.  Macdonald  K.  Crane  K.  Choukroune  P.  Seguret  M.  Moody  R.  Kastens  K. 《Marine Geophysical Researches》1984,6(2):159-185
During the Fall of 1979, a manned submersible program, utilizing DSRV ALVIN, was carried out at the intersection of the East Pacific Rise (EPR) with the Tamayo Transform boundary. A total of seven dives were completed in the vicinity of the EPR/Tamayo intersection depression and documented the geologic relationships that characterize the juxtaposition of these types of plate boundaries. The young volcanic terrain of the EPR axis can be traced into and across the Tamayo Transform valley but becomes buried by sedimentary talus that is being shed from sediment scarps along the unstable sediment slope that defines the north side of the intersection depression. Within 4 km of the transform boundary, the dominant trend (000°) of the fissures and faults that disrupt the rise-generated volcanics is markedly oblique to the regional direction of sea floor spreading (120°). Since no evidence was found to suggest that these structures accommodate significant amounts of strike-slip displacement, they are taken to reflect a distortion of the EPR extensional tectonic regime by a transform generated shear couple. The floor of the Tamayo Transform valley in this area is inundated by mass-wasted sediment, and the principal transform displacement zone is characterized at the surface by a narrow (<1.5 km) interval of fault scarps in sediment that trends parallel with the transform valley. Extrapolated to the west, this zone links with zones of transform deformation investigated during earlier submersible studies (CYAMEX and Pastouret, 1981). Evidence of low-level hydrothermal discharge was seen at one locality on the EPR axis and at another 8 km west of the axis at the edge of the zone of transform deformation.  相似文献   
7.
Rates for nitrification, phytoplankton uptake of ammonium, and regeneration of ammonium were measured in the Delaware River as functions of irradiance and nutrient concentrations, using 15N labeling methods. Phytoplankton uptake increased and nitrification rates declined with increased light intensity. The irradiance level required for maximum uptake by phytoplankton was similar to that for maximal inhibition of nitrification (about 300μEm−2 s−1). Daily, water-column averaged rates, calculated by integration of the observed rate-intensity relationships, indicate that light plays a key role in regulating the balance between oxidation of NH4+ by bacteria and assimilation by phytoplankton in the Delaware. The results show that uptake of ammonium by phytoplankton in the dark may exceed uptake in the light in optically thick systems.  相似文献   
8.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   
9.
The processes by which energetic electrons lose energy in a weakly ionized gas of argon are analysed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization and heating efficiences are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying up to 10?2.  相似文献   
10.
Modification of brackish marshes by nonindigenousPhragmites australis has occurred across a broad geographical area in eastern North America. Among its effects on marsh processes,Phragmites may be increasingly unfavorable to marsh surface fishes as its invasion progresses within an estuary. We assessed the effect of thePhragmites invasion on resident marsh surface fishes by examining the population response ofFundulus heteroclitus (mummichog, 5–48 mm TL) andF. luciae (spotfin killifish, 5–41 mm TL) to four distinct invasion stages in three estuaries of the U.S. mid Atlantic region (New Jersey, Delaware, and Maryland). We documented precipitous declines in mean catch per unit effort ofF. heteroclitus in pit traps from natural marsh (51.6), through initial (33.8), early (12.3), and late invasion stages (2.4) across all sites. A similar pattern was documented forF. luciae, with mean catch per unit effort in pit traps declining from natural marsh (48.9), through initial (39.1), early (9.3), and late invasion stages (2.7). Population structure of both species also changed somewhat across invasion stages such that we collected a narrower size range of individuals of both species from late invasion stages. Patterns suggest that as thePhragmites invasion progresses, there is a decline in habitat function for larval and juvenileF. heteroclitus and an increased risk of extirpation ofF. luciae from brackish marshes along the east coast of the U.S.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号