首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
地球物理   1篇
地质学   1篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   
2.
Loose programming enables analysts to program with concepts instead of procedural code. Data transformations are left underspecified, leaving out procedural details and exploiting knowledge about the applicability of functions to data types. To synthesize workflows of high quality for a geo‐analytical task, the semantic type system needs to reflect knowledge of geographic information systems (GIS) at a level that is deep enough to capture geo‐analytical concepts and intentions, yet shallow enough to generalize over GIS implementations. Recently, core concepts of spatial information and related geo‐analytical concepts were proposed as a way to add the required abstraction level to current geodata models. The core concept data types (CCD) ontology is a semantic type system that can be used to constrain GIS functions for workflow synthesis. However, to date, it is unknown what gain in precision and workflow quality can be expected. In this article we synthesize workflows by annotating GIS tools with these types, specifying a range of common analytical tasks taken from an urban livability scenario. We measure the quality of automatically synthesized workflows against a benchmark generated from common data types. Results show that CCD concepts significantly improve the precision of workflow synthesis.  相似文献   
3.
Water Resources - This study used the Innovative trend analysis method, Mann-Kendall, and Sen’s slope estimator test to investigate the mean annual precipitation, annual mean air temperature,...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号