首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   18篇
  国内免费   12篇
测绘学   18篇
大气科学   76篇
地球物理   179篇
地质学   293篇
海洋学   68篇
天文学   134篇
综合类   2篇
自然地理   91篇
  2021年   5篇
  2020年   13篇
  2019年   8篇
  2018年   7篇
  2017年   21篇
  2016年   22篇
  2015年   13篇
  2014年   17篇
  2013年   41篇
  2012年   23篇
  2011年   37篇
  2010年   32篇
  2009年   36篇
  2008年   34篇
  2007年   34篇
  2006年   27篇
  2005年   18篇
  2004年   21篇
  2003年   25篇
  2002年   27篇
  2001年   17篇
  2000年   10篇
  1999年   5篇
  1998年   12篇
  1997年   12篇
  1996年   13篇
  1995年   14篇
  1994年   11篇
  1993年   18篇
  1992年   11篇
  1991年   8篇
  1990年   9篇
  1989年   14篇
  1988年   10篇
  1987年   18篇
  1986年   11篇
  1985年   15篇
  1984年   14篇
  1983年   18篇
  1982年   25篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   16篇
  1977年   9篇
  1976年   9篇
  1975年   12篇
  1974年   8篇
  1973年   5篇
  1972年   6篇
排序方式: 共有861条查询结果,搜索用时 31 毫秒
1.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
2.
3.
Forty-three lightcurves of 21 asteroids obtained in Arizona between 1968 and 1978 are presented with a brief discussion of each. Included are four asteroids not previously observed: 34 Circe, 138 Tolosa, 162 Laurentia, and 1058 Grubba. Rotation periods are at least 12 hr for Circe, either 6.42 or 12.98 hrs for Laurentia, and more than 18 hr for Grubba. Magnitudes and colors for 12 of the asteroids are given. It appears that 10 Hygiea has lightcurves which sometimes have two maxima per rotation cycle and sometimes three. A strong relation between amplitude and solar phase angle is seen for 39 Laetitia. The first direct evidence of an opposition effect for 89 Julia is given. 511 Davida is discussed in an effort to understand the pole orientation using photometric astrometry.  相似文献   
4.
Seasonal distribution of sulfur fractions in Louisiana salt marsh soils   总被引:2,自引:0,他引:2  
The profile distributions of specific sulfur forms were examined at a site in a Louisiana salt marsh over a 1-yr period. Soil samples were fractionated into acid-volatile sulfides, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, carbon-bonded sulfur, and total sulfur. Inorganic sulfur constituted 16% to 36% of total sulfur, with pyrite sulfur representing <2%. Pyrite sulfur content in marsh soil was relatively high in winter. Pyrite sulfur and elemental sulfur together accounted for 4% to 24% of the inorganic sulfur fraction. Between 74% and 95% of inorganic sulfur was present as the HCl-soluble sulfur form. A significant negative correlation between acid-volatile sulfides and elemental sulfur observed in summer suggested the transformation of fulfides to elemental sulfur. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, predominated in all sampling periods, comprising 64% to 84% of total sulfur. The conversion of ester-sulfate sulfur into carbon-bonded sulfur was more likely to occur in winter than in other seasons. Carbon-bonded sulfur accounted for 53% to 89% of the organic sulfur. Organic sulfur was the major contributor to the variation of total sulfur in all seasons studied. Total sulfur concentration showed a statistically significant increase with depth.  相似文献   
5.
Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface.  相似文献   
6.
Benthic oxygen uptake, sulphate reduction and benthic bacterial production were measured at two contrasting locations in the southern North Sea: the shallow and turbulent Broad Fourteens area in the Southern Bight, and the deeper Oyster Grounds, a deposition area, where thermohaline stratification occurs during summer. Oxygen uptake and sulphate reduction showed a clear seasonal pattern in the Broad Fourteens area, indicating a supply of carbon to the benthic system that is closely related to the standing stock of carbon in the water column. This close benthic-pelagic coupling is probably due to the influence of the tide in this part of the North Sea, which keeps the water column permanently mixed. At the Oyster Grounds, no seasonal pattern was observed. Peaks in oxygen uptake and sulphate reduction were found in winter. Irregularly occurring events, such as storms and fishery-related activities, are likely to affect the benthic mineralization patterns in this area. Annual benthic carbon mineralization rates estimated from oxygen uptake rates were 44 gC·m−2 at the Broad Fourteens, and 131 gC·m−2 at the Oyster Grounds, of which 26 and 28%, respectively, could be attributed to sulphate reduction (assuming an annual sulphide reoxidation rate of 100%). Although sulphate reduction rates in the southern North Sea are higher than previously suggested, aerobic respiration is the most important pathway for benthic carbon mineralization at the stations visited. Production rates of benthic bacterial carbon measured with labelled leucine were much higher than carbon mineralization rates based on oxygen uptake or sulphate reduction. This may either imply a very high bacterial carbon conversion efficiency, or point to shortcomings in the accuracy of the techniques. A critical evaluation of the techniques is recommended.  相似文献   
7.
Anaerobic salt marsh sediments were amended with a variety of organic pollutants and the effects on methanogenesis, sulfate reduction and carbon dioxide evolution were examined. Addition of 1000 μg g?1 (dry weight sediment) Arochlor 1221, lindane, endrin, benzene and phenanthrene resulted in no significant effects on the activities studied. Methanogenesis was inhibited by 1000 μg g?1toxaphene, PCP, chlordane, naphthalene, DDT, Kepone and heptachlor and by 100 μg g?1 PCP and toxaphene. At 1000 μg g?1 naphthalene and toxaphene and 100 μg g?1 PCP, a period of initial inhibition of methanogenesis was followed by stimulation relative to controls. Arochlor 1254 (1000 μg g?1) and Temik (500 and 10 μg g?1) stimulated methanogenesis from the outset. Temik at 500 μg g?1 gave the greatest stimulation of methanogenesis (900% of controls) of any of the compounds studied. Sulfate reduction was inhibited by 1000 μg g?1 PCP, toxaphene, naphthalene and chlordane and by 500 μg g?1 atrazine and 100 μg g?1 heptachlor. Sustained inhibition of sulfate reduction by naphthalene, toxaphene and PCP may have contributed to the stimulation of methanogenesis. Carbon dioxide evolution was not significantly affected by most of the compounds studied except for 100 μg g?1 PCP and 1000 μg g?1 aphthalene, each of which gave significant inhibition in only one of three experiments.Concentrations of individual organic pollutants required to cause observable effects were high. It is concluded that, except for highly polluted sediments, methanogenesis, sulfate reduction and CO2 evolution would not be affected by the compounds studied here at concentrations typically found in the environment.  相似文献   
8.
青海湖国际环境钻探信息系统(DIS)   总被引:1,自引:0,他引:1  
1背景位于亚洲内陆的青海湖是我国最大的内陆咸水湖,坐落于青藏高原东北缘,其东邻黄土高原,西连荒漠和沙漠,处于东亚季风湿润区和内陆干旱区的过渡带上,对气候和全球环境变化十分敏感,是研究我国西部环境变化、青藏高原隆升过程、环境效应及它们与全球联系的极佳场所。以中国科  相似文献   
9.
To address the relative importance of shrimp trawling on seabed resuspension and bottom characteristics in shallow estuaries, a series of disturbance and monitoring experiments were conducted at a bay bottom mud site (2.5 m depth) in Galveston Bay, Texas in July 1998 and May 1999. Based on pre- and post-trawl sediment profiles of 7Be; pore water dissolved oxygen and sulfide concentration; and bulk sediment properties, it was estimated that the trawl rig, including the net, trawl doors, and “tickler chain,” excavate the seabed to a maximum depth of approximately 1.5 cm, with most areas displaying considerably less disturbance. Water column profile data in the turbid plume left by the trawl in these underconsolidated muds (85–90% porosity; <0.25 kPa undrained shear strength) demonstrate that suspended sediment inventories of up to 85–90 mg/cm2 are produced immediately behind the trawl net; an order of magnitude higher than pre-trawl inventories and comparable to those observed during a 9–10 m/s wind event at the study site. Plume settling and dispersion caused suspended sediment inventories to return to pre-trawl values about 14 min after trawl passage in two separate experiments, indicating particles re-settle primarily as flocs before they can be widely dispersed by local currents. As a result of the passage of the trawl rig across the seabed, shear strength of the sediment surface showed no significant increase, suggesting that bed armoring is not taking place and the trawled areas will not show an increase in critical shear stress.  相似文献   
10.
The chemical speciation of dissolved mercury in surface waters of Galveston Bay was determined using the concentrations of mercury-complexing ligands and conditional stability constants of mercury-ligand complexes. Two classes of natural ligands associated with dissolved organic matter were determined by a competitive ligand exchange-solvent solvent extraction (CLE-SSE) method: a strong class (Ls), ranging from 19 to 93 pM with an average conditional stability constant (KHgLs) of 1028, and a weak class (Lw) ranging from 1.4 to 9.8 nM with an average KHgLs of 1023. The range of conditional stability constants between mercury and natural ligands suggested that sulfides and thiolates are important binding sites for dissolved mercury in estuarine waters. A positive correlation between the estuarine distribution of dissolved glutathione and that of mercury-complexing ligands supported this suggestion. Thermodynamic equilibrium modeling using stability constants for HgL, HgClx, Hg(OH)x, and HgCl(OH) and concentrations of each ligand demonstrated that almost all of the dissolved mercury (> 99%) in Galveston Bay was complexed by natural ligands associated with dissolved organic matter. The importance of low concentrations of high-affinity ligands that may originate in the biological system (i.e., glutathione and phytochelatin) suggests that the greater portion of bulk dissolved organic matter may not be important for mercury complexation in estuarine surface waters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号