首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   2篇
  2006年   2篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The Evaporation at Grid/Pixel Scale (EVA_GRIPS) project was realised in order to determine the area-averaged evaporation over a heterogeneous land surface at the scale of a grid box of a regional numerical weather prediction or climate model, and at the scale of a pixel of a satellite image. EVA_GRIPS combined surface-based and airborne measurements, satellite data analysis, and numerical modelling activities. A mesoscale field experiment, LITFASS-2003, was carried out in the heterogeneous landscape around the Meteorological Observatory Lindenberg (MOL) of the German Meteorological Service in May and June, 2003. The experiment was embedded in the comprehensive, operational measurement program of the MOL. Experimental determination of surface fluxes on a variety of spatial scales was achieved by employing micrometeorological flux stations, scintillometers, a combination of ground-based remote sensing instruments, and the Helipod, a turbulence probe carried by a helicopter. Surface energy fluxes were also derived from satellite data. Modelling work included the use of different Soil–Vegetation–Atmosphere Transfer schemes, a large-eddy simulation model and three mesoscale atmospheric models. The paper gives an overview on the background of EVA_GRIPS, and on the measurements and meteorological conditions during LITFASS-2003. A few general results are discussed.  相似文献   
2.
Land-surface heterogeneity effects on the subgrid scale of regional climate and numerical weather prediction models are of vital interest for the energy and mass exchange between the surface and the atmospheric boundary layer. High-resolution numerical model simulations can be used to quantify these effects, and are a tool used to obtain area-averaged surface fluxes over heterogeneous land surfaces. We present high-resolution model simulations for the LITFASS area near Berlin during the LITFASS-2003 experiment, which were carried out using the non-hydrostatic model FOOT3DK of the University of Köln with horizontal resolutions of 1 km and 250 m. The LITFASS-2003 experimental dataset is used for comparison. The screen level quantities show good quality for the simulated pressure, temperature, humidity and wind speed and direction. Averaged over the four week experimental period, simulated surface energy fluxes at land stations show a small bias for the turbulent heat fluxes and an underestimation of the net radiation caused by excessive cloudiness in the simulations. For eight selected days with low cloud amounts, the net radiation bias is close to zero, but the sensible heat flux shows a strong positive bias. Large differences are found for latent heat fluxes over a lake, which are partly due to local effects on the measurements, but an additional problem seems to be the overestimation of the turbulent exchange under stable conditions in the daytime internal boundary layer over the lake. In the area average over the LITFASS area of 20 ×  20 km2, again a strong positive bias of 70 W m?2 for the sensible heat is present. For the low soil moisture conditions during June 2003, the simulation of the turbulent heat fluxes is sensitive to variations in the soil type and its hydrological properties. Under these conditions, the supply of ground water to the lowest soil layer should be accounted for. Different area-averaging methods are tested. The experimental set-up of the LITFASS-2003 experiment is found to be well suited for the computation of area-averaged turbulent heat fluxes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号