首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4525篇
  免费   1377篇
  国内免费   2082篇
测绘学   181篇
大气科学   4079篇
地球物理   828篇
地质学   1320篇
海洋学   386篇
天文学   24篇
综合类   227篇
自然地理   939篇
  2024年   72篇
  2023年   139篇
  2022年   231篇
  2021年   282篇
  2020年   278篇
  2019年   372篇
  2018年   260篇
  2017年   309篇
  2016年   277篇
  2015年   329篇
  2014年   417篇
  2013年   484篇
  2012年   423篇
  2011年   410篇
  2010年   300篇
  2009年   357篇
  2008年   333篇
  2007年   414篇
  2006年   354篇
  2005年   285篇
  2004年   240篇
  2003年   232篇
  2002年   162篇
  2001年   145篇
  2000年   153篇
  1999年   109篇
  1998年   94篇
  1997年   81篇
  1996年   75篇
  1995年   81篇
  1994年   71篇
  1993年   47篇
  1992年   34篇
  1991年   26篇
  1990年   24篇
  1989年   25篇
  1988年   19篇
  1987年   10篇
  1986年   9篇
  1985年   4篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   5篇
排序方式: 共有7984条查询结果,搜索用时 31 毫秒
1.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
2.
利用钻孔测井资料并运用地层倾角测量信息分析法,给出了江汉盆地地应力最大水平主压应力方向为NE60~65°  相似文献   
3.
The precipitation patterns in flood season over China associated with the El Niño/Southern Oscillation (ENSO) are investigated, especially in the eastern China, using the rather long period rainfall data in this century. The results show that there were remarkable differences between the precipitation patterns in flood seasons of ENSO warm phase (El Niño year) and cold phase (La Niña year), as well as between the patterns in El Niño years and their following years. The most parts of China received below normal rainfall in flood season of the onset years of El Niño events, but the coastal area of Southeast China received above normal amounts. Comparatively, the most parts of China received above normal rainfall in flood season of the following years of El Niño events, but the eastern part of the reaches among the Huanghe (Yellow) River, the Huaihe River and the Haihe River, and the Northeast China received less. During ENSO cold phase, the reaches of the Changjiang (Yangtze) River and the North China received more amounts than normal rainfall in flood season of the onset years of La Niña events, and the other regions of China received less. In the following years of La Niña events, the coastal area of the Southeast China, the most part of the Northeast China and the regions between the Huanghe River and the Huaihe River received more precipitation during flood seasons, but the other parts received below normal precipitation.  相似文献   
4.
The main reasons for the high content of inorganic N and its increase by several times in the Changjiang River and its mouth during the last 40 years were analysed in this work. The inorganic N in precipitation in the Changjiang River catchment mainly comes from gaseous loss of fertilizer N, N resulting from the increases of population and livestock, and from high temperature combustions of fossil fuels. N from precipitation is the first N source in the Changjiang River water and the only direct cause of high content of inorganic N in the Changjiang River and its mouth. The lost N in gaseous form and from agriculture non-point sources fertilizer comprised about 60% of annual consumption of fertilizer N in the Changjiang River catchment and were key factors controlling the high content of inorganic N in the Changjiang River mouth. The fate of the N in precipitation and other N sources in the Changjiang River catchment are also discussed in this paper.  相似文献   
5.
A 4.96-m-long sediment core from the Hanon paleo-maar in Jeju Island, Korea was studied to investigate the paleoclimatic change and East Asian monsoon variations during the latest Pleistocene to early Holocene (23,000-9000 cal yr BP). High-resolution TOC content, magnetic susceptibility, and major element composition data indicate that Jeju Island experienced the coldest climate around 18,000 cal yr BP, which corresponds to the last glacial maximum (LGM). Further, these multi-proxy data show an abrupt shift in climatic regime from cold and arid to warm and humid conditions at around 14,000 cal yr BP, which represents the commencement of the last major deglaciation. After the last major deglaciation, the TOC content decreased from 13,300 to 12,000 cal yr BP and from 11,500 to 9800 cal yr BP, thereby reflecting the weakening of the summer monsoon. The LGM in Jeju Island occurred later in comparison with the Chinese Loess Plateau. Such a disparity in climatic change events between central China and Jeju Island appears to be caused by the asynchrony between the coldest temperature event and the minimum precipitation event in central China and by the buffering effect of the Pacific Ocean.  相似文献   
6.
气候变化对塔里木河来自天山的地表径流影响   总被引:21,自引:10,他引:11  
塔里木河水资源主要来自天山南坡两条源流,选择西段阿克苏河和中段开都河-孔雀河作为研究区.1956-2003年研究河源山区气温呈持续升温且降水波动增加的趋势,其中1995-2003年升温强劲,升温速率高出48 a期间平均的3倍以上;降水自1986年后持续增加,20世纪90年代较80年代增幅达18%,并显示出河源山区湿岛向塔里木盆地扩展.因高山缺少气象观测,出山径流过程变化可以综合反映中高山带的气候变化.塔里木河来自天山的地表径流在1986-2003年间持续增长,以冰川融水补给为主的库玛拉克河,1994年以来年径流量增加已在前期平均值基础上提升了一个台阶;开都河以降水径流补给为主,1986-2002年出现了观测记录以来的丰水期,并使1986年后博斯腾湖水位快速上升,恢复到1958年记录的最高水位以上.两河年径流变化趋势基本相似,但也显示有西、中段的气候变化局部差异,出现丰枯水期的不一致;然而,在近16 a升温过程中,年径流增长幅度和快慢相近.  相似文献   
7.
针对多传感器观测环境下带乘性噪声系统的逆向最优滤波与反褶积融合估计问题 ,本文提出了 1种基于极大似然准则的最优融合算法。该算法中各单传感器间并行计算 ,并且融合中心与单传感器处理中心间无反向通讯 ,因而执行效率较高。仿真表明 ,该融合算法产生的逆向滤波与反褶积比单传感器处理结果有较明显提高  相似文献   
8.
太湖表面定振波的数值计算和最大熵谱分析   总被引:1,自引:0,他引:1  
逄勇  濮培民 《海洋与湖沼》1996,27(2):157-162
利用水动力学方程对太湖表面的定振波进行计算,算得定振波周期约为452min,另外,利用1992年8月29-31日在太湖西山观测到的水位资料,采用最大熵谱法,分析太湖表面的定振波,得周期值约为450min。计算和分析的周期值基本吻合,取熵谱分析结果得太湖表面的单节点定振波周期值为450min。  相似文献   
9.
10.
Atmospheric forcing of the eastern tropical Pacific: A review   总被引:1,自引:8,他引:1  
The increase in marine, land surface, atmospheric and satellite data during recent decades has led to an improved understanding of the air–sea interaction processes in the eastern tropical Pacific. This is also thanks to extensive diagnoses from conceptual and coupled ocean–atmosphere numerical models. In this paper, mean fields of atmospheric variables, such as incoming solar radiation, sea level pressure, winds, wind stress curl, precipitation, evaporation, and surface energy fluxes, are derived from global atmospheric data sets in order to examine the dominant features of the low level atmospheric circulations of the region. The seasonal march of the atmospheric circulations is presented to depict the role of radiative forcing on atmospheric perturbations, especially those dominating the atmosphere at low levels.In the tropics, the trade winds constitute an important north–south energy and moisture exchange mechanism (as part of the low level branch of the Hadley circulation), that determines to a large extent the precipitation distribution in the region, i.e., that associated with the Inter-Tropical Convergence Zone (ITCZ). Monsoonal circulations also play an important role in determining the warm season precipitation distribution over the eastern tropical Pacific through a large variety of air–sea–land interaction mechanisms. Westward traveling waves, tropical cyclones, low latitude cold air intrusions, and other synoptic and mesoscale perturbations associated with the ITCZ are also important elements that modulate the annual rainfall cycle. The low-level jets of the Gulf of California, the Intra-Americas Sea (Gulf of Mexico and Caribbean Sea) and Chocó, Colombia are prominent features of the eastern tropical Pacific low-level circulations related to sub-regional and regional scale precipitation patterns. Observations show that the Intra-Americas Low-Level Jet intensity varies with El Niño/Southern Oscillation (ENSO) phases, however its origin and role in the westward propagation and development of disturbances that may hit the eastern tropical Pacific, such as easterly waves and tropical cyclones, are still unclear. Changes in the intensity of the trade winds in the Caribbean Sea and the Gulf of Mexico (associated with eastern tropical Pacific wind jets) exert an important control on precipitation by means of wind–topography interactions. Gaps in the mountains of southern Mexico and Central America allow strong wind jets to pass over the continent imprinting a unique signal in sea surface temperatures and ocean dynamics of the eastern tropical Pacific.The warm pools of the Americas constitute an important source of moisture for the North American Monsoon System. The northeastern tropical Pacific is a region of intense cyclogenetic activity, just west of the coast of Mesoamerica. Over the oceanic regions, large-scale properties of key variables such as precipitation, moisture, surface energy fluxes and wind stress curl are still uncertain, which inhibits a more comprehensive view of the region and stresses the importance of regional field experiments. Progress has been substantial in the understanding of the ocean and atmospheric dynamics of the eastern tropical Pacific, however, recent observational evidence such as that of a shallow meridional circulation cell in that region, in contrast to the classic concept of the Hadley-type deep meridional circulation, suggests that more in situ observations to validate theories are still necessary.This paper is part of a comprehensive review of the oceanography of the eastern tropical Pacific Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号