首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   23篇
  国内免费   18篇
测绘学   1篇
大气科学   16篇
地球物理   51篇
地质学   45篇
海洋学   31篇
自然地理   15篇
  2022年   3篇
  2021年   1篇
  2020年   8篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   11篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   7篇
  2009年   12篇
  2008年   4篇
  2007年   6篇
  2006年   5篇
  2005年   4篇
  2004年   8篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
排序方式: 共有159条查询结果,搜索用时 156 毫秒
1.
杨军  宋二祥  陈肇元 《岩土力学》2003,24(5):710-714
将相关论文[1]中得到的饱和土一维简谐响应解析解,应用到饱和土中两类压缩波的独立作用、饱和土中波的传播速度、u-p方程的适用范围等研究中。在两类压缩波的独立作用研究中,克服了以前文献中的数学不严密性。研究了饱和土各参数对三种体波波速的影响。通过比较u-w和u-p方程的解答,定量地说明了u-p方程的适用范围。  相似文献   
2.
王卫国  蒋维楣 《气象科学》1997,17(3):274-279
利用三维非静力能量闭合(E-ε)的边界层模式,以深圳海岸复杂地形进行了实际模拟。结果给出了该地区海陆风情形下气流和湍流孤变化特征。在海风发展盛期,气流方向由大面积的水域和内陆的位置决定,不规则海岸线对局地气流影响不大,夜间陆风时,不规则海岸线对局地气流影响较大,湍流能量高值颁在陆地上空的不稳定层内,水面上湍能很小。模拟结果与实测结果上比较吻合。  相似文献   
3.
This paper presents results from forced vibration tests, microtremor observations and earthquake response analysis of a nuclear reactor containment model constructed on stiff soil in Hualien, Taiwan. The dynamic behavior of the soil-structure system is simulated successfully with two numerical models: a sway-rocking model, whose soil parameters are evaluated on the basis of the continuum formulation method, and a finite element model, using the program SASSI with the flexible volume substructuring approach. The dependences of the soil parameters of both models on the amplitudes of the different dynamic excitations are investigated in detail. An original numerical simulation of microtremor is performed. Comparison with results of a previous study involving a rigid tower on a soft soil site in Chiba, Japan is offered.  相似文献   
4.
A new complex modal analysis‐based method is developed in the frequency domain for efficient computation of the earthquake input energy to a highly damped linear elastic passive control structure. The input energy to the structure during an earthquake is an important measure of seismic demand. Because of generality and applicability to non‐linear structures, the earthquake input energy has usually been computed in the time domain. It is shown here that the formulation of the earthquake input energy in the frequency domain is essential for deriving a bound on the earthquake input energy for a class of ground motions and for understanding the robustness of passively controlled structures to disturbances with various frequency contents. From the viewpoint of computational efficiency, a modal analysis‐based method is developed. The importance of overdamped modes in the energy computation of specific non‐proportionally damped models is demonstrated by comparing the energy transfer functions and the displacement transfer functions. Through numerical examinations for four recorded ground motions, it is shown that the modal analysis‐based method in the frequency domain is very efficient in the computation of the earthquake input energy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
5.
6.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
7.
This paper describes a soil‐structure coupling method to simulate blast loading in soil and structure response. For the last decade, simulation of soil behavior under blast loading and its interaction with semi buried structure in soil becomes the focus of computational engineering in civil and mechanical engineering communities. In current design practice, soil‐structure interaction analysis often assumes linear elastic properties of the soil and uses small displacement theory. However, there are numerous problems, which require a more advanced approach that account for soil‐structure interaction and appropriate constitutive models for soil. In simplified approaches, the effect of soil on structure is considered using spring‐dashpot‐mass system, and the blast loading is modeled using linearly decaying pressure–time history based on equivalent trinitrotoluene and standoff distance, using ConWep, a computer program based on semi‐empirical equations. This strategy is very efficient from a CPU time computing point of view but may not provide accurate results for the dynamic response of the structure, because of its significant limitations, mainly when soil behavior is strongly nonlinear and when the buried charge is close to the structure. In this paper, both soil and explosive are modeled using solid elements with a constitutive material law for soil, and a Jones–Wilkins–Lee equation of state for explosive. One of the problems we have encountered when solving fluid structure interaction problems is the high mesh distortion at the contact interface because of high fluid nodal displacements and velocities. Similar problems have been encountered in soil structure interaction problems. To prevent high mesh distortion for soil, a new coupling algorithm is performed at the soil structure interface for structure loading. The coupling method is commonly used for fluid structure interaction problems in automotive and aerospace industry for fuel sloshing tank, and bird impact problems, but rarely used for soil structure interaction problems, where Lagrangian contact type algorithms are still dominant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
An effective and accurate technique for the numerical solution of 2-D electromagnetic scattering problems with 3-D sources is presented. This solution introduces a set of the usual boundary integral equations and uses a scalar Green's function. In this scalar version, the unknowns of the problem are the boundary values of the longitudinal fields and their normal derivatives in the Fourier domain. A generalization of the usual boundary integral formulation enables us to handle a large class of models composed of piecewise homogeneous domains, including contiguous domains, multiply-connected domains and unbounded domains. This formulation involves the solution of a system of linear equations, and results in a significant saving in computation time in comparison with other rigorous methods.
  The requirements for the numerical implementation of this solution are described in detail. Numerical tests were carried out using the important example of electromagnetic tomography. The specific symmetry properties of the response function in this case are illustrated. Numerical accuracy is verified over a large frequency range, up to 1  MHz.  相似文献   
9.
10.
Prediction of long‐term settlement and control of gas pollution to the environment are two principle concerns during the management of municipal solid waste (MSW) landfills. The behavior of settlement and gas flow in MSW landfills is complicated due to the combined effect of mechanical deformation of the solid skeleton and continuous biodegradation of the waste. A one‐dimensional settlement and gas flow model is presented in this paper, which is capable of predicting time evolution of settlement as well as temporal and spatial distribution of gas pressure within multi‐layered landfills under a variety of operating scenarios. The analytical solution to the novel model is evaluated with numerical simulation and field measurements. The resulting efficiency and accuracy highlight the capability of the proposed model to reproduce the settlement behavior and gas flow in MSW landfills. The influences of operating conditions and waste properties on settlement and gas pressure are examined for typical MSW landfills. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号