首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   5篇
大气科学   5篇
  2015年   4篇
  2005年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
2.
3.
Based on Global Ocean Data Assimilation System(GODAS) and NCEP reanalysis data, atmospheric and oceanic processes possibly responsible for the onset of the 2011/12 La Nia event, which followed the 2010/11 La Nia even—referred to as a "double dip" La Nia—are investigated. The key mechanisms involved in activating the 2011/12 La Nia are illustrated by these datasets. Results show that neutral conditions were already evident in the equatorial eastern Pacific during the decaying phase of the 2010/11 La Nia. However, isothermal analyses show obviously cold water still persisting at the surface and at subsurface depths in off-equatorial regions throughout early 2011, being most pronounced in the tropical South Pacific. The negative SST anomalies in the tropical South Pacific acted to strengthen a southern wind across the equator. The subsurface cold water in the tropical South Pacific then spread northward and broke into the equatorial region at the thermocline depth. This incursion process of off-equatorial subsurface cold water successfully interrupted the eastern propagation of warm water along the equator, which had previously accumulated at subsurface depths in the warm pool during the 2010/11 La Nia event. Furthermore, the incursion process strengthened as a result of the off-equatorial effects, mostly in the tropical South Pacific. The negative SST anomalies then reappeared in the central basin in summer 2011, and acted to trigger local coupled air–sea interactions to produce atmospheric–oceanic anomalies that developed and evolved with the second cooling in the fall of 2011.  相似文献   
4.
Isopycnal analyses were performed on the Global Ocean Data Assimilation System(GODAS) to determine the oceanic processes leading to so-called second-year cooling of the La Nina event. In 2010–12, a horseshoe-like pattern was seen,connecting negative temperature anomalies off and on the Equator, with a dominant influence from the South Pacific. During the 2010 La Nina event, warm waters piled up at subsurface depths in the western tropical Pacific. Beginning in early 2011,these warm subsurface anomalies propagated along the Equator toward the eastern basin, acting to reverse the sign of sea surface temperature(SST) anomalies(SSTAs) there and initiate a warm SSTA. However, throughout early 2011, pronounced negative anomalies persisted off the Equator in the subsurface depths of the South Pacific. As isopycnal surfaces outcropped in the central equatorial Pacific, negative anomalies from the subsurface spread upward along with mean circulation pathways, naturally initializing a cold SSTA. In the summer, a cold SSTA reappeared in the central basin, which subsequently strengthened due to the off-equatorial effects mostly in the South Pacific. These SSTAs acted to initiate local coupled air–sea interactions, generating atmospheric–oceanic anomalies that developed and evolved with the second-year cooling in the fall of 2011. However, the cooling tendency in mid-2012 did not develop into another La Nina event, since the cold anomalies in the South Pacific were not strong enough. An analysis of the 2007–09 La Nina event revealed similar processes to the2010–12 La Nina event.  相似文献   
5.
South China Sea summer monsoon onset in relation to the off-equatorial ITCZ   总被引:3,自引:0,他引:3  
Observations of the South China Sea summer monsoon (SCSSM) demonstrate the different features between the early and late onsets of the monsoon. The determining factor related to the onset and the resultant monsoon rainfall might be the off-equatorial ITCZ besides the land-sea thermal contrast. The northward-propagating cumulus convection over the northern Indian Ocean could enhance the monsoon trough so that the effect of the horizontal advection of moisture and heat is substantially increased, thus westerlies can eventually penetrate and prevail over the South China Sea (SCS) region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号