首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   11篇
天文学   1篇
  2016年   1篇
  2002年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有12条查询结果,搜索用时 114 毫秒
1.
Absorption cross-sections of nine halomethanes (CCl4, CHCl3, CH2Cl2, CH3Cl, CFCl3, CF2Cl2, CF3Cl, CHFCl2, and CHF2Cl), measured between 174 and 250 nm for temperatures ranging from 225 to 295 K, are presented with uncertainties ranging from 2 to 4% and compared with previous determinations made for comparable temperature ranges.The largest temperature effect which takes place near the absorption threshold, decreases the absorption cross-section up to 50% for highly chlorinated methanes, but is negligible for molecules highly stabilized by hydrogen and/or fluorine. Extrapolated values for temperatures of aeronomical interest are presented, as well as parametrical formulas which give absorption cross-section values for given wavelength and temperature ranges.  相似文献   
2.
The photodissociation coefficient, J NO2 of NO2 in the atmosphere was calculated at 235 and 298 K using the measured temperature dependences of the absorption cross-sections and quantum yields. These calculations gave a ratio J NO2(298 K)/J NO2(235 K)=1.155±0.010 which is only weakly dependent on altitude, surface albedo and solar zenith angle.  相似文献   
3.
The temperature-dependent ultraviolet absorption cross-sections of CF3-CHFCI (HCFC-124) have been measured between 170 and 230 nm for temperatures ranging from 295 to 210 K, with uncertainties between 2 and 4%. These results are compared with other available sets of determinations. Temperature effects are discussed and the photodissociation coefficients, presented with their temperature dependence, are calculated. Implication of the temperature dependences on the stratospheric chemistry is also discussed. Parametrical formulae are proposed to compute absorption crosssection values for wavelengths and temperatures useful in modelling calculations.  相似文献   
4.
The actinic flux is the only radiometric quantity suitable for photolysisfrequency determination. It is derived from solar spectral irradiancemeasurements performed by a portable spectroradiometer in the 300–850nm wavelength range. The spectral irradiance is first divided into a directpart and a diffuse part, according to the atmospheric conditions, and thenconverted into the corresponding actinic flux quantity. As an intermediary,the ratio of diffuse actinic flux to diffuseirradiance is calculated by the spherical harmonics radiative code withrespect to wavelength, solar zenith angle, surface albedo, and aerosolproperties.The results of extensive sensitivity studies of asa function of the main atmospheric parameters are discussed and lead to theconclusion that aerosol optical depth is the major critical value for aprecise determination. The global algorithm totransform spectral irradiance into actinic flux is finally applied forphotodissociation rate calculations by convolution of the obtained actinicflux spectra with the absorption cross-sections and quantum yields of themolecule studied. Photolysis rates of different atmospheric photooxidants havebeen measured with this spectroradiometric method during the summers of 1993and 1994 in Brittany and in Portugal. The ozone and nitrogen dioxidephotodissociation rates obtained present a good agreement with thej(O3) and j(NO2) actinometerresults, for the same experimental conditions in Brittany.  相似文献   
5.
Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for =10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with 2 nm produced errors no larger than 5%.  相似文献   
6.
The absorption cross-sections of HCFC-123 (CF3–CHCl2), HCFC-141b (CH3–CFCl2) and HCFC-142b (CH3–CF2Cl) are measured between 170 and 250 nm for temperatures ranging from 295 to 210 K with uncertainties between 2 and 4%. They are compared with other available determinations. Temperature effects are discussed and parametrical formulae are proposed to compute the absorption cross-section for wavelengths and temperatures useful in atmospheric modelling calculations. Photodissociation coefficients are presented and their temperature-dependence is discussed.  相似文献   
7.
The room-temperature photodecomposition of acetone diluted with synthetic air was studied at nine wavelengths in the spectral region 250–330 nm. The quantum yields for the products CO2 and CO indicated that it was not possible to suppress secondary reactions sufficiently, even with acetone/air mixing ratios as low as 150 ppmv, to derive from these data primary acetone photodissociation quantum yields. The behavior of CO2 and CO formation nevertheless provides some insight into the mechanism of acetone photodecomposition. When small amounts of NO2 are added to acetone/air mixtures, peroxyacetyl nitrate (PAN) is formed. Quantum yields for PAN are reported. They are better suited to represent primary quantum yields for acetone photodissociation, because PAN is a direct indicator for the formation of acetyl radicals. The data were combined with absorption cross-sections for acetone measured at wavelengths up to 360 nm to calculate photodissociation coefficients applicable to the ground-level atmosphere at 40° northern latitude. Comparison with the rates for the reaction of acetone with OH radicals shows that both processes contribute almost equally to the total acetone losses in the lower atmosphere. The resulting atmospheric life time at 40° northern latitude is 32 days, on average. This value must be considered an upper limit, since it does not take into account acetone losses due to the reaction of excited triplet acetone with oxygen.  相似文献   
8.
Ultraviolet absorption cross-sections of trifluoro-bromo-methane (CF3Br-Halon 1301), difluoro-dibromo-methane (CF2Br2-Halon 1202) and of difluoro-bromo-chloro-methane (CF2BrCl-Halon 1211) are measured in the wavelength interval 172–304 nm for temperatures ranging from 210 to 295 K with uncertainties of between 2 and 4%. They are compared with previous measurements available at room temperature. Temperature effects are discussed and parametrical formulae are proposed to compute the absorption cross-sections for wavelengths and temperatures useful in atmospheric modelling calculations. Photodissociation coefficients are presented and their temperature dependence is discussed.  相似文献   
9.
采用密度泛函B3LYP理论对氟利昂C2Cl2F4 (F-114)在6-31G++(d,p)基组水平上进行分子结构优化、红外光谱计算,理论计算所得结果与实验结果基本吻合.此外又通过从头算CIS方法计算了C2Cl2F4及其离子的低激发态,将所得分子低激发态的键长、键角及二面角等参数进行了对比分析,并得到了C2Cl2F4分子的UV-Vis光谱和分子前线轨道,最后对C2Cl2F4+离子的低激发态光解离动力学进行了分析.  相似文献   
10.
The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account.Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models.It is stressed that both models in their present form cannot handle partial cloudiness.It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light.For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud.Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号