首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   1篇
地球物理   1篇
  2009年   1篇
  1993年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The photodegradation of naphthalene (NPH), chosen as a model of polynuclear aromatic pollutants, has been studied in the presence of a layer of four water-insoluble inorganic solids which can be found in the troposphere (TiO2, Fe2O3, muscovite, and a fly ash sample). Direct photolysis of NPH is negligible at >340 nm. Dark adsorption of NPH on TiO2 (mainly anatase, nonporous, 50 m2 g–1) at 293 K corresponds to a surface coverage ofca. 50% at equilibrium. Under these conditions (saturated surface), the stationary-state photocatalytic degradation reaches 0.4 molecule nm–2 h–1 (>340 nm, radiant fluxca. 22 mW cm–2). Dioxygen is required and its partial pressure in air is such that the degradation is zero order in O2. Water vapor markedly increases the rate. The other particulates have also an effect, less important than that of TiO2, however quite noticeable with respect to surface area unit for the fly ash sample which contains 3.2% Fe2O3. Apart from 1,4-naphthoquinone, which is the main intermediate product in all cases, 2-naphthol, phthalide, phthaldialdehyde, phthalic acid, acetophenone, benzaldehyde, benzoic acid are also formed on dry TiO2. Depending on their volatility, these compounds are transferred to the gas phase or remain principally adsorbed on the solid particles where they are further transformed. For instance, phthalic acid (or anhydride) and benzoic acid are generated from 1,4-naphthoquinone. Degradation mechanisms are briefly discussed.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号