首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   3篇
地球物理   7篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
2.
A procedure combining the Soil Conservation Service‐Curve Number (SCS‐CN) method and the Green–Ampt (GA) infiltration equation was recently developed to overcome some of the drawbacks of the classic SCS‐CN approach when estimating the volume of surface runoff at a sub‐daily time resolution. The rationale of this mixed procedure, named Curve Number for Green–Ampt (CN4GA), is to use the GA infiltration model to distribute the total volume of the net hyetograph (rainfall excess) provided by the SCS‐CN method over time. The initial abstraction and the total volume of rainfall given by the SCS‐CN method are used to identify the ponding time and to quantify the hydraulic conductivity parameter of the GA equation. In this paper, a sensitivity analysis of the mixed CN4GA parameters is presented with the aim to identify conditions where the mixed procedure can be effectively used within the Prediction in Ungauged Basin perspective. The effects exerted by changes in selected input parameters on the outputs are evaluated using rectangular and triangular synthetic hyetographs as well as 100 maximum annual storms selected from synthetic rainfall time series. When applied to extreme precipitation events, which are characterized by predominant peaks of rainfall, the CN4GA appears to be rather insensitive to the input hydraulic parameters of the soil, which is an interesting feature of the CN4GA approach and makes it an ideal candidate for the rainfall excess estimation at sub‐daily temporal resolution at ungauged sites. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Understanding the principal causes and possible solutions for groundwater depletion in India is important for its water security, especially as it relates to agriculture. A study was conducted in an agricultural watershed in Andhra Pradesh, India to assess the impacts on groundwater of current and alternative agricultural management. Hydrological simulations were used as follows: (1) to evaluate the recharge benefits of water‐harvesting tillage through a modified Soil and Water Assessment Tool (SWAT) model and (2) to predict the groundwater response to changing extent and irrigation management of rice growing areas. The Green–Ampt infiltration routine was modified in SWAT was modified to represent water‐harvesting tillage using maximum depression storage parameter. Water‐harvesting tillage in rainfed croplands was shown to increase basin‐scale groundwater recharge by 3% and decrease run‐off by 43% compared with existing conventional tillage. The groundwater balance (recharge minus irrigation withdrawals), negative 11 mm/year under existing management changed to positive (18–45 mm/year) when rice growing areas or irrigation depths were reduced. Groundwater balance was sensitive to changes in rice cropland management, meaning even small changes in rice cropland management had large impacts on groundwater availability. The modified SWAT was capable of representing tillage management of varying maximum depression storage, and tillage for water‐harvesting was shown to be a potentially important strategy for producers to enhance infiltration and groundwater recharge, especially in semi‐arid regions where rainfall may be becoming increasingly variable. This enhanced SWAT could be used to evaluate the landscape‐scale impacts of alternative tillage management in other regions that are working to develop strategies for reducing groundwater depletion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
4.
The Soil Conservation Service Curve Number (SCS‐CN) method is a popular rainfall–runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS‐CN is a simple and valuable approach to quantify the total streamflow volume generated by storm rainfall, but its use is not appropriate for estimating the sub‐daily incremental rainfall excess. To overcome this drawback, we propose to include the Green‐Ampt (GA) infiltration model into a mixed procedure, which is referred to as Curve Number for Green‐Ampt (CN4GA), aiming to distribute in time the information provided by the SCS‐CN method. For a given storm, the computed SCS‐CN total net rainfall amount is employed to calibrate the soil hydraulic conductivity parameter of the GA model. The proposed procedure is evaluated by analysing 100 rainfall–runoff events that were observed in four small catchments of varying size. CN4GA appears to provide encouraging results for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, better agreement with the observed hydrographs than the classic SCS‐CN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
Observed scale effects of runoff on hillslopes and small watersheds derive from complex interactions of time-varying rainfall rates with runoff, infiltration and macro- and microtopographic structures. A little studied aspect of scale effects is the concept of water depth-dependent infiltration. For semi-arid rangeland it has been demonstrated that mounds underneath shrubs have a high infiltrability and lower lying compacted or stony inter-shrub areas have a lower infiltrability. It is hypothesized that runoff accumulation further downslope leads to increased water depth, inundating high infiltrability areas, which increases the area-averaged infiltration rate. A model was developed that combines the concepts of water depth-dependent infiltration, partial contributing area under variable rainfall intensity, and the Green–Ampt theory for point-scale infiltration. The model was applied to rainfall simulation data and natural rainfall–runoff data from a small sub-watershed (0.4 ha) of the Walnut Gulch Experimental Watershed in the semi-arid US Southwest. Its performance to reproduce observed hydrographs was compared to that of a conventional Green–Ampt model assuming complete inundation sheet flow, with runon infiltration, which is infiltration of runoff onto pervious downstream areas. Parameters were derived from rainfall simulations and from watershed-scale calibration directly from the rainfall–runoff events. The performance of the water depth-dependent model was better than that of the conventional model on the scale of a rainfall simulator plot, but on the scale of a small watershed the performance of both model types was similar. We believe that the proposed model contributes to a less scale-dependent way of modeling runoff and erosion on the hillslope-scale.  相似文献   
6.
Résumé

Développé sur tableur MS Excel, Calhy est un modèle monodimensionnel d'irrigation à la planche sur calan homogène, pour un sol sur horizon sous-jacent très drainant. De type onde cinétique ou onde diffusante, il adapte le modèle de Green et Ampt et l'équation de Manning-Strickler en tenant compte d'une rétention de surface. Avec cinq paramètres, dont deux mesurés pour décrire l'état d'humectation initial du sol et trois optimisés, le modèle reproduit l'avancement du front ruisselé et le débit de colature observés lors d'irrigations sur prairie dans la plaine semi aride de la Crau (Sud de la France). Les paramètres optimisés sont: la conductivité hydraulique à saturation du sol, constante; le coefficient de Strickler et la rétention de surface, décroissants durant la saison avec l'évolution de la flore et du microrelief. Didactique et convivial, le modèle peut aider à optimiser l'irrigation, dans le but d'obtenir l'infiltration désirée en apportant le moins d'eau possible.

Citation Bader, J.-C., Saos, J.-L. & Charron, F. (2010) Modèle de ruissellement, avancement et infiltration pour l'irrigation à la planche sur un sol recouvrant un sous-sol très perméable. Hydrol. Sci. J. 55(2), 177–191.  相似文献   
7.
The Green–Ampt infiltration equation is an incomplete governing equation for rainfall infiltration due to the absence of an inertia term. The estimation of the capillary pressure head at the wetting front is difficult to determine. Thus, a major limitation of the Green–Ampt model is the constant, non‐zero surface ponding depth. This paper proposes an integrated rainfall infiltration model based on the Green–Ampt model and the SCS‐CN model. It achieves a complete governing equation for rainfall infiltration by momentum balance and the water budget based on the Green–Ampt assumption, and uses the curve number from the SCS‐CN method to calculate the initial abstraction, which is used as a basic parameter for the governing equation of the intensity of rainfall loss during the runoff period. The integrated rainfall infiltration model resolves the dilemma for capillary pressure head estimation, overcomes the limitation of constant, non‐zero surface ponding depth, and facilitates the calculation of runoff for individual flood simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号