首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   3篇
地球物理   5篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Most-probable-number (MPN) dilution series were used to enumerate and isolate bacteria from bulk water, suspended aggregates, the oxic layer, and the oxic–anoxic transition zone of the sediment of a tidal flat ecosystem in the southern North Sea. The heterotrophic aerobic bacteria were able to grow on agar-agar, alginate, cellulose, chitin, dried and ground Fucus vesiculosus, Marine Broth 2216, palmitate, and starch. MPN counts of bulk water and aggregate samples ranged between 0.18?×?101 and 1.1?×?106 cells per milliliter and those of the sediment surface and the transition zone between 0.8?×?101 and 5.1?×?107 cells per gram dry weight. Marine Broth and F. vesiculosus yielded the highest values of all substrates tested and corresponded to 2.3–32% of 4,6-diamidinophenyl indole cell counts. Strains of seven phylogenetic classes were obtained: Actinobacteria, Bacilli, α- and γ-Proteobacteria, Sphingobacteria, Flavobacteria, and Planctomycetacia. Only with agar-agar as substrate could organisms of all seven classes be isolated.  相似文献   
2.
In this study, remediation results of trace metals in natural water and treated water using three functionalized nanofiber mats of cellulose and chitosan are reported. The nanofiber materials, packed in mini-columns, were employed for the remediation of five toxic trace metals (Cd, Pb, Cu, Cr and Ni) from natural water samples. Trace metals in real water samples were undetectable as the concentrations were lower than the instrument’s detection limits of 0.27 × 10−3 (Cd) and 4.2 × 10−2 (Pb) μg mL−1, respectively. However, after percolation through the functionalised biosorbents in cartridges, detectability of the metal ions was enhanced. The starting volume of the natural water sample was 100 mL, which was passed through a column containing the nanofibers sorbent and the retained metals eluted with 5 mL of 2.0 M nitric acid. The eluate was analyzed for metals concentrations. An enrichment factor of 20 for the metals was realized as a result of the pre-concentration procedure applied to handle the determination of the metals at trace levels. The order of remediation of the studied metals using the nanofibers was as follows: chitosan/PAM-g-furan-2,5-dione < cellulose-g-furan-2,5-dione < cellulose-g-oxolane-2,5-dione. The modified biopolymer nanofibers were able to adsorb trace metals from the river water and treated water, thereby confirming their capability of water purification. These materials are proposed as useful tools and innovative approach for improving the quality of drinking for those consumers in small scale households.  相似文献   
3.
4.
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号