首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   11篇
  国内免费   15篇
测绘学   2篇
大气科学   1篇
地球物理   70篇
地质学   141篇
海洋学   7篇
天文学   1篇
综合类   1篇
自然地理   9篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   8篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   5篇
  2011年   11篇
  2010年   7篇
  2009年   19篇
  2008年   28篇
  2007年   23篇
  2006年   15篇
  2005年   13篇
  2004年   18篇
  2003年   5篇
  2002年   7篇
  2001年   6篇
  2000年   7篇
  1999年   9篇
  1998年   7篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1988年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
1.
In the northern limb of the 2.06-Ga Bushveld Complex, the Platreef is a platinum group elements (PGE)-, Cu-, and Ni-mineralized zone of pyroxenite that developed at the intrusion margin. From north to south, the footwall rocks of the Platreef change from Archaean granite to dolomite, hornfels, and quartzite. Where the footwall is granite, the Sr-isotope system is more strongly perturbed than where the footwall is Sr-poor dolomite, in which samples show an approximate isochron relationship. The Nd-isotope system for samples of pyroxenite and hanging wall norite shows an approximate isochron relationship with an implied age of 2.17 ± 0.2 Ga and initial Nd-isotope ratio of 0.5095. Assuming an age of 2.06 Ga, the ɛNd values range from −6.2 to −9.6 (ave. −7.8, n = 17) and on average are slightly more negative than the Main Zone of the Bushveld. These data are consistent with local contamination of an already contaminated magma of Main Zone composition. The similarity in isotope composition between the Platreef pyroxenites and the hanging wall norites suggests a common origin. Where the country rock is dolomite, the Platreef has generally higher plagioclase and pyroxene δ 18O values, and this indicates assimilation of the immediate footwall. Throughout the Platreef, there is considerable petrographic evidence for sub-solidus interaction with fluids, and the Δ plagioclase–pyroxene values range from −2 to +6, which indicates interaction at both high and low temperatures. Whole-rock and mineral δD values suggest that the Platreef interacted with both magmatic and meteoric water, and the lack of disturbance to the Sr-isotope system suggests that fluid–rock interaction took place soon after emplacement. Where the footwall is granite, less negative δD values suggest a greater involvement of meteoric water. Consistently higher values of Δ plagioclase–pyroxene in the Platreef pyroxenites and hanging wall norites in contact with dolomite suggest prolonged interaction with CO2-rich fluid derived from decarbonation of the footwall rocks. The overprint of post crystallization fluid–rock interaction is the probable cause of the previously documented lack of correlation between PGE and sulfide content on the small scale. The Platreef in contact with dolomite is the focus of the highest PGE grades, and this suggests that dolomite contamination played a role in PGE concentration and deposition, but the exact link remains obscure. It is a possibility that the CO2 produced by decarbonation of assimilated dolomite enhanced the process of PGE scavenging by sulfide precipitation.  相似文献   
2.
Based on an environmental geochemistry case study carried out in the neighbourhood of a W–Sn abandoned mine, the pollution in stream sediments was modelled through a Global Contamination Index. Such an index permits one to summarize the combination of deleterious elements in a single variable, obtained by the projection of samples onto the first axis of a PCASD (Principal Components Analysis of Standardized Data) applied to the entire n × p matrix containing the available concentrations of p = 16 elements in the set of n = 220 collected samples.In order to provide a sound basis for a coherent planning of the remediation process which will be put in operation in the affected area, it is necessary to balance the costs of reclaiming with the probabilities of exceeding the upper limits accepted for concentrations of environmentally harmful elements in sediments. Given these limits, they are back-transformed in the index values, providing a practical threshold between ‘clean’ and ‘contaminated’ samples. On the other hand, the minimum dimension of the cell to be reclaimed is restrained by the selected remediation process to be applied in the affected area. Hence, to meet the constraints of such a remediation process, it is required to estimate the probabilities of exceeding the index threshold in technologically meaningful sub-areas. For this end, the Indicator Block Kriging technique was applied, producing a series of maps where sub-areas to be reclaimed can be spotted for different probability levels. These maps, on which the decision making remediation agency can rely for its cost-benefit analysis, take into account both the spatial structure of ‘clean’ vs. ‘contaminated’ samples and the constraints of the reclaiming process.  相似文献   
3.
喀斯特地表水和地下水的交换活跃,地下水系统容易受到地表污染物的污染。为了解喀斯特城市地表水—地下水系统污染特征和污染物质来源,对贵阳市地表水、地下水、雨水和城市排污污水的硫同位素和氯同位素组成变化进行了研究。贵阳市不同类型水体的δ37Cl值在-4.07‰~+2.03‰之间变化,δ34SSO4值变化为-20.4‰~+20.9‰。大气输入物质和城市排污污水的δ37Cl、δ34S及Cl-/SO42-比值与地表水和地下水的不同,稳定硫和氯同位素的结合研究为示踪地下水污染物来源提供了有效研究手段。贵阳市地下水中的Cl-和SO42-至少有4种来源,人为活动通过城市排污和大气输入向地下水系统大量输入了硫酸盐和氯离子。   相似文献   
4.
A hydrogeologic model that has been used by many researchers and consultants to describe an area of South Lake Tahoe, California, USA impacted by MTBE contamination describes a relatively homogeneous unconfined aquifer comprised of poorly sorted glacial outwash deposits, within which water-supply wells are able to exert significant alteration in natural groundwater flow. A re-examination of the area’s hydrogeology is presented, which supports a layered heterogeneous aquifer system constructed of alternating fine and coarser-grained glacio-lacustrine depositional units. This re-evaluation was accomplished through a review of lithologic logs across an area of approximately 1 km2, combined with observations of significant hydraulic head differences and knowledge of the depositional environments controlled by Pleistocene Lake Tahoe high stands. Many of the fine-grained units observed at depths from 6 to 15 m, although relatively thin, are generally continuous and serve as significant barriers to groundwater flow. The vertical migration of contamination across these fine-grained units to deeper groundwaters was facilitated by cross-screened monitoring wells installed as part of site investigation activities. This conclusion highlights the importance of geologic characterization and proper monitoring well construction at contaminated site investigations.
Electronic supplementary material   The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Michaela NovakEmail:
  相似文献   
5.
The Oso Bay, Texas, sediments from nine sites were analyzed by GC-MS for organics to measure contamination in the bay. In most of the sites sediments contained tetrachloroethene (87–1433 g/kg), bis (2-ethylhexyl)phthalate (40–193 g/kg), and aliphatic hydrocarbons, C8-C13 (720–2491 g/kg). Sources of these contaminants include a landfill, military facilities, and municipal and industrial discharges. Size analysis of the sediments indicates they contain a high percentage of muddy sand (50–75 percent), which suggests that Oso Bay consists of common bay margin sediments.  相似文献   
6.
Aiming at defining a valid spatial contamination model, resistivity and induced polarization (IP) measurements were used to investigate contamination plumes in the vicinity of two municipal landfills (Ovar and ílhavo). Previous geophysical surveys and underground water samples confirmed the contamination. However 2D resistivity/IP surveys enabled in obtaining a more accurate spatial model. The Ovar survey consisted of two profiles with nine Wenner soundings each; the ílhavo survey was carried out along two individual lines using a Wenner standard pseudo-section. In both situations, negative IP values were found associated with positive IP values, which can be explained mainly by 2D or 3D geometric effects caused by the presence of the conductive plumes. The data were modelled using a 2D inversion program (RES2DINV) and the resulting resistivity and chargeability distributions were displayed as pseudo-sections. The resistivity and chargeability pseudo-sections define the contamination plumes and the sedimentary structure. These case studies illustrate the advantages of 2D resistivity/IP surveys for the mapping of shape and dimension of contamination associated with landfills.  相似文献   
7.
The Zlata Idka village is a typical mountainous settlement. As a consequence of more than 500 years of mining activity, its environment has been extensively affected by pollution from potentially toxic elements. This paper presents the results of an environmental-geochemical and health research in the Zlata Idka village, Slovakia. Geochemical analysis indicates that arsenic (As) and antimony (Sb) are enriched in soils, groundwater, surface water and stream sediments. The average As and Sb contents are 892 mg/kg and 818 mg/kg in soils, 195 mg/kg and 249 mg/kg in stream sediments, 0.028 mg/l and 0.021 mg/l in groundwater and 0.024 mg/l and 0.034 mg/l in surface water. Arsenic and Sb concentrations exceed upper permissible limits in locally grown vegetables. Within the epidemiological research the As and Sb contents in human tissues and fluids have been observed (blood, urine, nails and hair) in approximately one third of the village’s population (120 respondents). The average As and Sb concentrations were 16.3 μg/l and 3.8 μg/l in blood, 15.8 μg/l and 18.8 μg/l in urine, 3,179 μg/kg and 1,140 μg/kg in nails and 379 μg/kg and 357 μg/kg in hair. These concentrations are comparatively much higher than the average population. Health risk calculations for the ingestion of soil, water, and vegetables indicates a very high carcinogenic risk (>1/1,000) for as content in soil and water. The hazard quotient [HQ=average daily dose (ADD)/reference dose (RfD)] calculation method indicates a HQ>1 for groundwater As and Sb concentrations.  相似文献   
8.
 Paleocollapse structure is a rock collapse, resulting from the failure in the geological history of the bedrock overlying karstified limestone. Depending on the present hydrogeological conditions within the area of paleocollapse and the internal properties of these structures, they can provide a means to facilitate groundwater flow and contaminant transport. Inactive paleocollapse structures can be reactivated by human activities such as dam construction, mining underground minerals, pumping groundwater, and development of landfills. They can also be reactivated by natural events such as earthquakes and neotectonic movements. In the mines of northern China, sudden inflow of karst water from Ordovician limestone into drifts and mining stopes through paleocollapse structures has caused significant economic loss. Water pumping tests and accompanied dye traces are effective approaches of locating water-conducting paleocollapse structures. Grouting is probably the best means of preventing them from becoming geohazards. Received: 26 November 1996 · Accepted: 17 June 1997  相似文献   
9.
 Marine contamination of groundwater may be caused by seawater intrusion and by salt spray. The role of both processes was studied in the Cyclades archipelago on four small islands (45–195 km2) whose aquifers consist essentially of fractured, weathered metamorphic rocks. Annual rainfall ranges from 400 to 650 mm and precipitation has high total dissolved solids contents of 45–223 mg l–1. The chemical characteristics of the groundwater, whose salinity is from 0.4 to 22 g l–1, are strongly influenced by seawater intrusion. However, the effect of atmospheric input is shown in certain water sampling locations on high ground elevation where the dissolved chloride contents may attain 200 mg l–1. Received: 14 November 1995 · Accepted: 9 September 1996  相似文献   
10.
This paper presents the results of the application of the Ground Penetrating Radar (GPR) method, or Georadar, in outlining a zone of contamination due to solid residues at the waste burial site of Rio Claro in the state of São Paulo, SE Brazil. A total of eight GPR profiles with 50- and 100-MHz antennae were surveyed. Six profiles were located within the landfill site and the remaining two were outside. The main objective of the GPR survey was to evaluate the side extension of contamination. A Vertical Electric Sounding (VES) survey was performed at four points within the site in order to investigate the vertical extent of the contamination plume and to define the bottom of the landfill. Two additional VESs were done outside the landfill with the purpose of determining the top of the ground water table and the geoelectric stratigraphy of the background. From the interpretation of the GPR profiles, it was possible to locate the top of the contamination plume and to infer that it was migrating laterally beyond the limits of the waste disposal site. This was observed along the profile situated close to the highway SP-127, which was about 20 m from the limit of the site. The signature of the contaminant appears as a discontinuous reflector that is believed to be a shallow ground water table. The discontinuity is marked by a shadow zone, which is characteristic of conductive contaminant residues. The contamination did not move far enough to reach a sugar cane plantation located at approximately 100 m from the border of the site. In the regions free from contamination, the ground water table was mapped at approximately 10 m of depth, and it was characterized by a strong and continuous reflector. The radar signal penetrated deep enough and enabled the identification of a second reflector at approximately 14 m deep, interpreted as the contact between the Rio Claro and the Corumbataí formations. The contact is marked by the presence of gravel characterized by ferruginous concretes, which cause the strong amplitude reflection in the GPR profile. Within the landfill site, the quantitative interpretation of the VES results showed the contamination zone. The base of the landfill varies between 11 and 15 m deep. Outside the landfill site, the VES results showed no indication of contamination and allowed the determination of the top of the ground water table and the contact between the Rio Claro and the Corumbataí formations. The results of GPR and VES showed a good agreement and the integrated interpretations were supported by local geology and information from several boreholes, about 17 m depth, on average. The bottom of the landfill reaches a maximum of 14.5 m depth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号