首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1485篇
  免费   427篇
  国内免费   152篇
测绘学   69篇
大气科学   52篇
地球物理   812篇
地质学   579篇
海洋学   122篇
天文学   309篇
综合类   64篇
自然地理   57篇
  2024年   1篇
  2023年   5篇
  2022年   20篇
  2021年   19篇
  2020年   46篇
  2019年   51篇
  2018年   37篇
  2017年   67篇
  2016年   51篇
  2015年   51篇
  2014年   80篇
  2013年   118篇
  2012年   48篇
  2011年   123篇
  2010年   75篇
  2009年   127篇
  2008年   153篇
  2007年   137篇
  2006年   93篇
  2005年   92篇
  2004年   74篇
  2003年   67篇
  2002年   63篇
  2001年   38篇
  2000年   48篇
  1999年   43篇
  1998年   48篇
  1997年   31篇
  1996年   55篇
  1995年   39篇
  1994年   34篇
  1993年   24篇
  1992年   22篇
  1991年   19篇
  1990年   16篇
  1989年   9篇
  1988年   14篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1978年   4篇
  1954年   6篇
排序方式: 共有2064条查询结果,搜索用时 15 毫秒
1.
2.
M. L. Demidov 《Solar physics》1996,164(1-2):381-388
The zero level problem of solar magnetographs is particularly important for observations of large-scale magnetic fields on the Sun. Experiments conducted at the STOP telescope of the Sayan observatory show that, in addition to adjustment errors of the polarization analyzer and the spectrograph focusing, spurious signals of the magnetograph are caused by polarization effects in optical components preceding the polarization analyzer and aberration errors of the spectrograph.  相似文献   
3.
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.On the possibility of existence of a fourth planet in distant orbit, see Wolszczan et al., 2000  相似文献   
4.
A critical evaluation of literature values for the solubility products, K sp NBS = [Fe2+][HS] Fe2+ HS (H NBS + )–1, of various iron sulphide phases results in consensus values for the pKs of 2.95 ± 0.1 for amorphous ferrous sulphide, 3.6 ± 0.2 for mackinawite, 4.4 ± 0.1 for greigite, 5.1 ± 0.1 for pyrrhotite, 5.25 ± 0.2 for troilite and 16.4 ± 1.2 for pyrite.Where the analogous ion activity products have been measured in anoxic freshwaters in which there is evidence for the presence of solid phase FeS, the values lie within the range of 2.6–3.22, indicating that amorphous iron sulphide is the controlling phase. The single value for a groundwater of 2.65 (2.98 considering carbonate complexation) agrees. In seawater four values range between 3.85 to 4.2, indicating that mackinawite or greigite may be the controlling phase. The single low value of 2.94 is in a situation where particularly high fluxes of Fe (II) and S (–II) may result in the preferential precipitation of amorphous iron sulphide. Formation of framboidal pyrite in these sulphidic environments may occur in micro-niches and does not appear to influence bulk concentrations. Calculations show that the formation of Fe2S2 species probably accounts for very little of the iron or sulphide in most natural waters. Previously reported stability constants for the formation of Fe (HS)2 and (Fe (HS)3) are shown to be suspect, and these species are also thought to be negligible in natural waters. In completely anoxic pore waters polysulphides also have a negligible effect on speciation, but in tidal sediments they may reach appreciable concentrations and lead to the direct formation of pyrite. Concentrations of iron and sulphide in pore waters can be controlled by the more soluble iron sulphide phase. The change in the IAP with depth within the sediment may reflect ageing of the solid phase or a greater flux of Fe (II) and S (–II) nearer the sediment surface. This possible kinetic influence on the value of IAPs has implications for their use in geochemical studies involving phase formation.  相似文献   
5.
Due to the high number of variables involved in mine profitability studies, it is often very difficult to establish connections among them in order to provide a blend of market saleable quality products. In this sense, analytical chemistry together with chemometry are essential and indispensable disciplines to tackle these studies. The aim of this work was to demonstrate the utility of these disciplines to carry out optimization studies of iron mines. For this purpose, one of the most important iron mines of the Iberian Peninsula was chosen, sited in the mountain range of Sierra Menera, near the location of Ojos Negros (Teruel, Spain). Geological, mineralogical and chemical composition of 148 samples was analyzed, corresponding to different depths of three drill holes (named TE1, TE2 and TE3). In particular, aspects concerning to chemical composition are very important, since the mean contents of certain elements, such as phosphorus, sodium and potassium, should be restricted to the established limits to prevent that companies can drive back the raw material if they do not fulfil the necessary requirements. On the other hand, the large number of analysed samples drove us to use a statistical processing of the data. Among other aspects, it provides a way to find possible connections among a high number of variables and classify samples into compositional groups sharing similar composition, in order to limit the mineralised area and to obtain enough information about the amount of those chemical elements associated to iron ores. Data obtained from all these analytical techniques were in good agreement and provide a methodology that can be of wide interest applied to different geological studies.  相似文献   
6.
Carbon cycle is connected with the most important environmental issue of Global Change.As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ o  相似文献   
7.
将高精度质子磁探仪和位场变换理论用于测量计算船舶磁场,以研究其在海洋中的分布。由质子磁探仪实测海面上10m处磁场的模(船的磁场与地磁场矢量的和的绝对值),用位场变换理论计算出船的磁场三个分量在水面和水下的分布;并采用一系列有效措施,提高计算速度和结果的精度。将该方法和磁球理论严格解比较,在z=0面上误差小于0.1%,在z=-20m面上误差小于1%;还给出船的磁场强度在船的纵横向的分布曲线和平面立体  相似文献   
8.
The first large-scale international intercomparison of analytical methods for the determination of dissolved iron in seawater was carried out between October 2000 and December 2002. The exercise was conducted as a rigorously “blind” comparison of 7 analytical techniques by 24 international laboratories. The comparison was based on a large volume (700 L), filtered surface seawater sample collected from the South Atlantic Ocean (the “IRONAGES” sample), which was acidified, mixed and bottled at sea. Two 1-L sample bottles were sent to each participant. Integrity and blindness were achieved by having the experiment designed and carried out by a small team, and overseen by an independent data manager. Storage, homogeneity and time-series stability experiments conducted over 2.5 years showed that inter-bottle variability of the IRONAGES sample was good (< 7%), although there was a decrease in iron concentration in the bottles over time (0.8–0.5 nM) before a stable value was observed. This raises questions over the suitability of sample acidification and storage.  相似文献   
9.
In July 2002, a combination of underway mapping and discrete profiles revealed significant along-shore variability in the concentrations of manganese and iron in the vicinity of Monterey Bay, California. Both metals had lower concentrations in surface waters south of Monterey Bay, where the shelf is about 2.5 km wide, than north of Monterey Bay, where the shelf is about 10 km wide. During non-upwelling conditions over the northern broad shelf, dissolvable iron concentrations measured underway in surface waters reached 3.5 nmol L−1 and dissolved manganese reached 25 nmol L−1. In contrast, during non-upwelling conditions over the southern narrow shelf, dissolvable iron concentrations in surface waters were less than 1 nmol L−1 and dissolved manganese concentrations were less than 5 nmol L−1. A pair of vertical profiles at 1000 m water depth collected during an upwelling event showed dissolved manganese concentrations of 10 decreasing to 2 nmol L−1, and dissolvable iron concentrations of 12–20 nmol L−1 in the upper 100 m in the north, compared to 3.5–2 nmol L−1 Mn and 0.6 nmol L−1 Fe in the upper 100 m in the south, suggesting the effect of shelf width influences the chemistry of waters beyond the shelf.These observations are consistent with current understanding of the mechanism of iron supply to coastal upwelling systems: Iron from shelf sediments, predominantly associated with particles greater than 20 μm, is brought to the surface during upwelling conditions. We hypothesize that manganese oxides are brought to the surface with upwelling and are then reduced to dissolved manganese, perhaps by photoreduction, following a lag after upwelling.Greater phytoplankton biomass, primary productivity, and nutrient drawdown were observed over the broad shelf, consistent with the greater supply of iron. Incubation experiments conducted 20 km offshore in both regions, during a period of wind relaxation, confirm the potential of these sites to become limited by iron. There was no additional growth response when copper, manganese or cobalt was added in addition to iron. The growth response of surface water incubated with bottom sediment (4 nmol L−1 dissolvable Fe) was slightly greater than in control incubations, but less than in the presence of 4 nmol L−1 dissolved iron. This may indicate that dissolvable iron is not as bioavailable as dissolved iron, although the influence of additional inhibitory elements in the sediment cannot be ruled out.  相似文献   
10.
To verify the hypothesis that the growth of phytoplankton in the Western Subarctic Gyre (WSG), which is located in the northwest subarctic Pacific, is suppressed by low iron (Fe) availability, an in situ Fe fertilization experiment was carried out in the summer of 2001. Changes over time in the abundance and community structure of phytoplankton were examined inside and outside an Fe patch using phytoplankton pigment markers analyzed by high-performance liquid chromatography (HPLC) and flow cytometry (FCM). In addition, the abundance of heterotrophic bacteria was also investigated by FCM. The chlorophyll a concentration was initially ca. 0.9 μg l−1 in the surface mixed layer where diatoms and chlorophyll b-containing green algae (prasinophytes and chlorophytes) were predominant in the chlorophyll biomass. After the iron enrichment, the chlorophyll a concentration increased up to 9.1 μg l−1 in the upper 10 m inside the Fe patch on Day 13. At the same time, the concentration of fucoxanthin (a diatom marker) increased 45-fold in the Fe patch, and diatoms accounted for a maximum 69% of the chlorophyll biomass. This result was consistent with a microscopic observation showing that the diatom Chaetoceros debilis had bloomed inside the Fe patch. However, chlorophyllide a concentrations also increased in the Fe patch with time, and reached a maximum of 2.2 μg l−1 at 5 m depth on Day 13, suggesting that a marked abundance of senescent algal cells existed at the end of the experiment. The concentration of peridinin (a dinoflagellate marker) also reached a maximum 24-fold, and dinoflagellates had contributed significantly (>15%) to the chlorophyll biomass inside the Fe patch by the end of the experiment. Concentrations of 19′-hexanoyloxyfucoxanthin (a prymnesiophyte marker), 19′-butanoyloxyfucoxanthin (a pelagophyte marker), and alloxanthin (a cryptophyte marker) were only incremented a few-fold increment inside the Fe patch. On the contrary, chlorophyll b concentration reduced to almost half of the initial level in the upper 10 m water column inside the Fe patch at the end of the experiment. A decrease with time in the abundance of eukaryotic ultraphytoplankton (<ca. 5 μm in size), in which chlorophyll b-containing green algae were possibly included was also observed by FCM. Overall, our results indicate that Fe supply can dramatically alter the abundance and community structure of phytoplankton in the WSG. On the other hand, cell density of heterotrophic bacteria inside the Fe patch was maximum at only ca. 1.5-fold higher than that outside the Fe patch. This indicates that heterotrophic bacteria abundance was little respondent to the Fe enrichment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号