首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
地球物理   4篇
地质学   4篇
自然地理   2篇
  2017年   1篇
  2015年   2篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有10条查询结果,搜索用时 248 毫秒
1
1.
In alluvial plains, intensive farming with conspicuous use of agrochemicals, can cause land pollution and groundwater contamination. In central Po River plain, paleo-channels are important links between arable lands and the underlaying aquifer, since the latter is often confined by clay sediments that act as a barrier against contaminants migration. Therefore, paleo-channels are recharge zones of particular interest that have to be protected from pollution as they are commonly used for water supply. This paper focuses on fertilizer mobilization next to a sand pit excavated in a paleo-channel near Ferrara (Italy). The problem is approached via batch test leaking and columns elution of alluvial sediments. Results from batch experiments showed fast increase in all major cations and anions, suggesting equilibrium control of dissolution reactions, limited availability of solid phases and geochemical homogeneity of samples. In column experiments, early elution and tailing of all ions breakthrough was recorded due to preferential flow paths. For sediments investigated in this study, dispersion, dilution and chemical reactions can reduce fertilizers at concentration below drinking standards in a reasonable time frame, provided fertilizer loading is halted or, at least, reduced. Thus, the definition of a corridor along paleo-channels is recommended to preserve groundwater quality.  相似文献   
2.
Hydrochemistry of groundwater is largely determined by both natural processes, such as dissolution, cation exchange, mixing, evaporation; and anthropogenic activities, which can affect the aquifer systems by contaminating them or by modifying their hydrological cycle. Both natural and anthropogenic processes vary in time and space; which is reflected in groundwater hydrochemistry variation. The objective of this study is the determination of the main hydrogeochemical processes that affect the quality of shallow groundwaters in the Grombalia basin, located in the Cap Bon Peninsula, north-eastern Tunisia. In this area, the chemical composition of groundwater is mostly characterized by Na–Cl–NO3–Ca water type which reveals the implication of natural and anthropogenic major factors. Natural factors are dissolution of evaporatic minerals, i.e. halite and gypsum and cation exchange with clays, while anthropogenic factors are pollution with industrial Sr-rich waste water and return flow of irrigation water, highly contaminated by MgSO4 and methyl-bromide fertilizers.  相似文献   
3.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   
4.
5.
The Guadalupe Valley aquifer is the only water source for one of the most important wine industries in Mexico, and also the main public water supply for the nearby city of Ensenada. This groundwater is monitored for major ion, N-NO3, P-PO4, Fe, As, Se, Mo, Cd, Cu, Pb, Zn and Sb concentrations, as well as TDS, pH, dissolved oxygen and temperature. High concentrations of N-NO3 (26 mg l−1), Se (70 μg l−1), Mo (18 μg l−1) and Cu (4.3 μg l−1) suggest that groundwater is being polluted by the use of fertilizers only in the western section of the aquifer, known as El Porvenir graben. Unlike the sites located near the main recharge area to the East of the aquifer, the water in El Porvenir graben has low tritium concentrations (<1.9 TU), indicating a pre-modern age, and thus longer water residence time. No significant variations in water quality (generally <10%) were detected throughout 2001–2002 in the aquifer, suggesting that reduced rainfall and recharge during this dry period did not significantly affect water quality. However, the wells nearest to the main recharge area in the Eastern aquifer show a slight but constant increase in TDS with time, probably as a result of the high (∼200 L S−1) uninterrupted extraction of water at this specific recharge site. Relatively high As concentrations for the aquifer (10.5 μg l−1) are only found near the northern limit of the basin associated with a geological fault.  相似文献   
6.
Groundwater is the major source of water to the Palestinians. Efficient management of this resource requires a good understanding of its status. This understanding necessitates a characterization of the quality of the utilizable volumes. This paper focuses on the assessment of nitrate concentrations in the aquifers of the West Bank, Palestine. A preliminary statistical analysis is carried out for the spatial and temporal distributions of the nitrate concentrations. GIS is utilized to facilitate the analysis and to efficiently account for the spatiality of nitrate concentrations. The analysis was carried out at different spatial levels and key parameters including soil type, watersheds, depth, population, and rainfall. It is observed that elevated nitrate concentrations in the groundwater greatly coincide with increasing rainfall, particularly in the last few years. Results confirm that the annual mean nitrate concentration in the Western groundwater basin has an increasing trend over the period from 1982 to 2004 indicating its vulnerability to contamination. This result can be attributed to the agricultural activities along with the high groundwater recharge. However, leaking septic and sewer systems are considerably causing nitrate contamination of groundwater in populated areas. Overall, the recommendations call for an immediate intervention to manage the quality problems in the West Bank aquifers.  相似文献   
7.
In view of the significance of agricultural commercialization for rural development, this study analyzed factors determining agricultural commercialization and mechanization in the hinterland of an urban centre in Morang district, Nepal. Information needed for the study was collected through a questionnaire survey, covering 120 farm households, and group discussion and key informant interviews. The regression analysis of determinants of agricultural commercialization revealed four significant variables, namely, the amount of inorganic fertilizer used, area under tractor-ploughing, area under pump-set irrigation and landholding size. The predicted R value of 0.87, R square of 0.75, and adjusted R square of 0.75 indicate the high explanatory power of the model as a whole. The regression model related to the area under pump-set irrigation predicted the degree of agricultural commercialization and the distance from the city as significantly influencing factors, with a predicted R value of 0.79, R square of 0.63, and adjusted R square of 0.62. The analysis of determinants of the area under tractor-ploughing found only the degree of commercialization as a significantly influencing factor, with a predicted R value of 0.77, R square of 0.59, and adjusted R square of 0.58. In both instances of farm mechanization, the degree of commercialization is the most influential factor, indicating the significant role of mechanization in agricultural commercialization. The major policy implications of the findings of the study are outlined.  相似文献   
8.
A numerical simulation was applied to first characterize the groundwater flow and patterns of nitrate pollution of a small-agricultural catchment in Tsukuba City, Japan, for a 10-year period. There was a good performance of the flow simulation. In contrast, although the transport model calculated the evolution of the plume, it only provided estimates of solute concentrations. Groundwater contamination increased exponentially during the first 594 days of the simulation, reaching then a near-equilibrium state. Fertilizer applications are responsible for most of the leaching of NO3 to groundwater, therefore, shifting of crops and the associated agricultural practices may translate into decreases of contamination levels. A series of hypothetical scenarios demonstrated that replacing grasslands by other crops may reduce the contamination levels up to 12%. As the chosen field is a representative of many other agricultural areas in Japan, the approach and results should also be applicable to similar cases around the country.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号