首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   3篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
2.
Hlöðufell is a familiar 1186 m high landmark, located about 80 km northeast of Reykjavík, and 9 km south of the Langkjökull ice-cap in south-west Iceland. This is the first detailed study of this well-exposed and easily accessible subglacial to emergent basaltic volcano. Eight coherent and eleven volcaniclastic lithofacies are described and interpreted, and its evolution subdivided into four growth stages (I–IV) on the basis of facies architecture. Vents for stages I, II, and IV lie along the same fissure zone, which trends parallel to the dominant NNE–SSW volcano-tectonic axis of the Western Volcanic Zone in this part of Iceland, but the stage III vent lies to the north, and is probably responsible for the present N–S elongation of the volcano. The basal stage (I) is dominated by subglacially erupted lava mounds and ridges, which are of 240 m maximum thickness, were fed from short fissures and locally display lava tubes. Some of the stage I lavas preserve laterally extensive flat to bulbous, steep, glassy surfaces that are interpreted to have formed by direct contact with surrounding ice, and are termed ice-contact lava confinement surfaces. These surfaces preserve several distinctive structures, such as lava shelves, pillows that have one flat surface and mini-pillow (< 10 cm across) breakouts, which are interpreted to have formed by the interplay of lava chilling and confinement against ice, ice melting and ice fracture. The ice-contact lava confinement surfaces are also associated with zones of distinctive open cavities in the lavas that range from about 1 m to several metres across. The cavities are interpreted as having arisen by lava engulfing blocks of ice, that had become trapped in a narrow zone of meltwater between the lava and the surrounding ice, and are termed ice-block meltout cavities. The same areas of the lavas also display included and sometimes clearly rotated blocks of massive to planar to cross-stratified hyaloclastite lapilli tuffs and tuff–breccias, termed hyaloclastite inclusions, which are interpreted as engulfed blocks of hyaloclastite/pillow breccia carapace and talus, or their equivalents reworked by meltwater. Some of the stage I lavas are mantled at the southern end of the mountain by up to 35 m thickness of well-bedded vitric lapilli tuffs (stage II), of phreatomagmatic origin, which were erupted from a now dissected cone, preserved in this area. The tephra was deposited dominantly by subaqueous sediment gravity flows (density currents) in an ice-bound lake (or less likely a sub-ice water vault), and was also transported to the south by sub-ice meltwater traction currents. This cone is onlapped by a subaerial pahoehoe lava-fed delta sequence, formed during stage III, and which was most likely fed from a now buried vent(s), located somewhere in the north-central part of the mountain. A 150 m rise in lake level submerged the capping lavas, and was associated with progradation of a new pahoehoe lava-fed delta sequence, produced during stage IV, and which was fed from the present summit cone vent. The water level rise and onset of stage IV eruptions were not associated with any obviously exposed phreatomagmatic deposits, but they are most likely buried beneath stage IV delta deposits. Stage IV lava-fed deltas display steep benches, which do not appear to be due to syn- or post-depositional mass wasting, but were probably generated during later erosion by ice. The possibility that they are due to shorter progradation distances than the underlying stage III deltas, due to ice-confinement or lower volumes of supplied lava is also considered.  相似文献   
3.
The Llangorse volcanic field is located in northwest British Columbia, Canada, and comprises erosional remnants of Miocene to Holocene volcanic edifices, lava flows or dykes. The focus of this study is a single overthickened, 100-m-thick-valley-filling lava flow that is Middle-Pleistocene in age and located immediately south of Llangorse Mountain. The lava flow is basanitic in composition and contains mantle-derived peridotite xenoliths. The lava directly overlies a sequence of poorly sorted, crudely bedded volcaniclastic debris-flow sediments. The debris flow deposits contain a diverse suite of clast types, including angular clasts of basanite lava, blocks of peridotite coated by basanite, and rounded boulders of granodiorite. Many of the basanite clasts have been palagonitized. The presence and abundance of clasts of vesicular to scoriaceous, palagonitized basanite and peridotite suggest that the debris flows are syngenetic to the overlying lava flow and sampled the same volcanic vent during the early stages of eruption. They may represent lahars or outburst floods related to melting of a snow pack or ice cap during the eruption. The debris flows were water-saturated when deposited. The rapid subsequent emplacement of a thick basanite flow over the sediments heated pore fluids to at least 80–100°C causing in-situ palagonitization of glassy basanite clasts within the sediments. The over-thickened nature of the Llangorse Mountain lavas suggests ponding of the lava against a down-stream barrier. The distribution of similar-aged glaciovolcanic features in the cordillera suggests the possibility that the barrier was a lower-elevation, valley-wide ice-sheet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号