首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   2篇
  国内免费   2篇
大气科学   8篇
地球物理   34篇
地质学   27篇
海洋学   32篇
天文学   3篇
综合类   2篇
自然地理   4篇
  2023年   1篇
  2019年   1篇
  2017年   4篇
  2016年   7篇
  2015年   1篇
  2014年   8篇
  2013年   1篇
  2012年   1篇
  2011年   7篇
  2010年   8篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2002年   9篇
  2001年   3篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   7篇
  1993年   2篇
  1992年   3篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有110条查询结果,搜索用时 46 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) are widespread carcinogenic, mutagenic and teratogenic pollutants that can significantly affect ecosystems and exert an influence on marine planktonic and benthic communities as well as on higher organisms such as fish and mammals, including humans. In this paper the concentrations of six PAHs in water, seston and copepods were examined in a harbour zone of the Genova Gulf (Ligurian Sea) from November 1997 to June 1998. The importance of freshwater inputs coming from a polluted stream and the influence of seasonal and atmospheric factors were also considered. Highest PAH values were recorded during spring. Fluoranthene, Benzo[b]fluoranthene and Benzo[k]fluoranthene were the most abundant PAHs either in water, seston or copepods. The concentration of total PAHs in seawater was often lower than the detection limit: recorded values ranged between 0.001 and 0.06 ppb. In seston, total PAHs ranged between 0.033 and 6.26 ng·g?1 and in copepods between 0.01 and 2.34 ng·g?1. With this study, PAH contamination in the harbour zone of Genova Sestri‐Ponente and the importance of inputs of organic pollutants coming from land and freshwaters have been emphasized.  相似文献   
2.
Although hydrocarbon-bearing fluids have been known from the alkaline igneous rocks of the Khibiny intrusion for many years, their origin remains enigmatic. A recently proposed model of post-magmatic hydrocarbon (HC) generation through Fischer-Tropsch (FT) type reactions suggests the hydration of Fe-bearing phases and release of H2 which reacts with magmatically derived CO2 to form CH4 and higher HCs. However, new petrographic, microthermometric, laser Raman, bulk gas and isotope data are presented and discussed in the context of previously published work in order to reassess models of HC generation. The gas phase is dominated by CH4 with only minor proportions of higher hydrocarbons. No remnants of the proposed primary CO2-rich fluid are found in the complex. The majority of the fluid inclusions are of secondary nature and trapped in healed microfractures. This indicates a high fluid flux after magma crystallisation. Entrapment conditions for fluid inclusions are 450–550 °C at 2.8–4.5 kbar. These temperatures are too high for hydrocarbon gas generation through the FT reaction. Chemical analyses of rims of Fe-rich phases suggest that they are not the result of alteration but instead represent changes in magma composition during crystallisation. Furthermore, there is no clear relationship between the presence of Fe-rich minerals and the abundance of fluid inclusion planes (FIPs) as reported elsewhere. δ13C values for methane range from − 22.4‰ to − 5.4‰, confirming a largely abiogenic origin for the gas. The presence of primary CH4-dominated fluid inclusions and melt inclusions, which contain a methane-rich gas phase, indicates a magmatic origin of the HCs. An increase in methane content, together with a decrease in δ13C isotope values towards the intrusion margin suggests that magmatically derived abiogenic hydrocarbons may have mixed with biogenic hydrocarbons derived from the surrounding country rocks.  相似文献   
3.
1 INTRODUCTION Extensive literature (Brown et al., 1985; Sawhney et al., 1981; Bierman and Swain, 1982; Connolly, 1980; Lopez-Avila and Hites, 1980; O扖onnor, 1988) described lots of sorbed pollutants or toxic substances in bed sediments of rivers, even after the effluent was halted for a long time. This is particularly true for hydrophobic organic compounds that can be sorbed on the particles and accumulated in the river bed sediments (Karickhoff et al., 1979). Pollution events of…  相似文献   
4.
Eighty-two core samples were collected from the Spring Valley #1 well which penetrates the Upper Carboniferous strata in the Late Devonian–Early Permian Maritimes Basin. The strata consist of alternating sandstones and mudstones deposited in a continental environment. The objective of this study is to characterize the relationship of sandstone porosity with depth, and to investigate the diagenetic processes related to the porosity evolution. Porosity values estimated from point counting range from 0% to 27.8%, but are mostly between 5% and 20%. Except samples that are significantly cemented by calcite, porosity values clearly decrease with depth. Two phases of calcite cement were distinguished based on Cathodoluminescence, with the early phase being largely dissolved and preserved as minor relicts in the later phase. Feldspar dissolution was extensive and contributed significantly to the development of secondary porosity. Quartz cementation was widespread and increased with depth. Fluid inclusions recorded in calcite and quartz cements indicate that interstitial fluids in the upper part of the stratigraphic column were dominated by waters with salinity lower than that of seawater, the middle part was first dominated by low-salinity waters, then invaded by brines, and the lower part was dominated by brines. Homogenization temperatures of fluid inclusions generally increase with depth and suggest a paleogeothermal gradient of 25 °C/km, which is broadly consistent with that indicated by vitrinite reflectance data. An erosion of 1.1–2.4 (mean 1.75) km of strata is inferred to have taken place above the stratigraphic column. δ18O values of calcite cements (mainly from the late phase) decrease with depth, implying increasing temperatures of formation, as also suggested by fluid-inclusion data. δ13C values of calcite cements range from −13.4‰ to −5.7‰, suggesting that organic matter was an important carbon source for calcite cements. A comparison of the porosity data with a theoretical compaction curve indicates that the upper and middle parts of the stratigraphic column show higher-than-normal porosity values, which are related to significant calcite and feldspar dissolution. Meteoric incursion and carboxylic acids generated from organic maturation were probably responsible for the abundant dissolution events.  相似文献   
5.
The early generation of liquid hydrocarbons from suberinite can be clearly observed under the microscope. The generation of this oil-like material, mainly in the form of exsudatinite, from the maceral suberinite occurs at a maturity level of about 0.4% vitrinite reflectance. Hydrocarbons appear to be naturally expelled from coal initially through sweating and agglomeration of suberinite which subsequently forms exsudatinite. It is suggested that extensive expulsion of exsudatinite causes cracks to develop in vitrinite whereas limited expulsion of exsudatinite will only impregnate the vitrinite matrix. If cracks are formed, it is possible they could progressively develop to form an exsudatinite-crack network. The formation of such a network is believed to represent an effective way of hydrocarbon expulsion from coal source rocks.  相似文献   
6.
The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called “Central Arch”. The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite–nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone.  相似文献   
7.
The so called bituminous salts occurring in the Kłodawa dome, located in Central Poland, differ from the surrounding salts by their colour change from light to dark brown. This colour is associated with an extremely large amount of hydrocarbon, mainly located in the inclusions. The presence of numerous fluid inclusions has been documented in previous petrologic studies, distinguishing seven main types of fluid inclusion assemblages (FIA) in terms of size, shape as well as the ratio of filling material. However, four types of inclusions were selected in the current investigations according to their unusual optical behaviour. Raman micro-spectroscopy a modern, non-destructive method was used for investigating a single inclusion being a part of FIA. Presented in this paper Raman spectra revealed a unique pattern of bands characterizing the content of the inclusions. The hydrocarbons show a very complex character reflected in the appearance of a strong fluorescence background. A well-marked heterogeneity characterized the inclusions, by diversity in the intensity of the background and in the pattern of the bands characterizing the presence of certain components. One can distinguish the presence of carbonaceous matter showing the different degrees of order. The depth profile and the analysis of the various points of the inclusions indicate that the carbonaceous matter is not evenly distributed in the inclusions but forms a thin, disorganized film on their walls. This film was also found in sites where the inclusions are filled with brine. The certain characteristics associated with the presence of the incipient phase transformation of the organic matter, or slightly transformed organic matter and the lack of light hydrocarbons as well as a number of petrologic features of inclusions indicate that these salt rocks have been subdivided into thermal transformations, accompanied by the recrystallization of the halite and the escape of the more volatile compounds such as methane, ethane, etc.  相似文献   
8.
This article focuses on field- and laboratory-based characterization of vertically persistent fractures that are part of oblique-slip normal fault zones and crosscut the Cretaceous platform and overlaying ramp carbonates outcropping at Maiella Mountain (central Italy). The achieved results show that: (i) fault damage zones are wider and more densely fractured in the platform carbonates than in the ramp ones; (ii) joints and sheared joints composing the fault damage zones are taller, better connected and less spaced within the former rocks than in the ramp carbonates. The aforementioned structural differences are interpreted to be a consequence of the different mechanical properties of the platform and ramp carbonates during failure. At Maiella Mountain, platform carbonates are, indeed, made up of overall stiffer (higher Uniaxial Compressive Strength values) and less porous rocks, due to more abundant intergranular void-filling cement and presence of matrix.In terms of hydrocarbon flow and recovery, geometric and dimensional attributes of fractures suggest that the well-connected network of closely spaced fractures cutting across the platform carbonates may form efficient pathways for both vertical and horizontal hydrocarbon flow. In contrast, the relatively poorly connected and low-density fracture network affecting the ramp carbonates is likely less efficient in providing fairways for flowing hydrocarbons.  相似文献   
9.
A fully automated system measuring C2–C6 hydrocarbon concentrations and vertical gradients was installed at Harvard Forest in Petersham, Massachusetts, using a gas chromatograph with dual flame ionization detectors and cryogenic sample preconcentration. Measurements were made simultaneously at two heights above the forest canopy at forty five minute intervals, continuously from July 1992 to the present. Data for concentration gradients were combined with CO2 flux measured by eddy correlation to determine the rates of production of biogenic hydrocarbons by the forest.  相似文献   
10.
Methane is, together with N2, the main precursor of Titan’s atmospheric chemistry. In our laboratory, we are currently developing a program of laboratory simulations of Titan’s atmosphere, where methane is intended to be dissociated by multiphotonic photolysis at 248 nm. A preliminary study has shown that multiphotonic absorption of methane at 248 nm is efficient and leads to the production of hydrocarbons such as C2H2 (Romanzin et al., 2008). Yet, at this wavelength, little is known about the branching ratios of the hydrocarbon radicals (CH3, CH2 and CH) and their following photochemistry. This paper thus aims at investigating methane photochemistry at 248 nm by comparing the chemical evolution observed after irradiation of CH4 at 248 and at 121.6 nm (Ly-α). It is indeed important to see if the chemistry is driven the same way at both wavelengths in particular because, on Titan, methane photolysis mainly involves Ly-α photons. An approach combining experiments and theoretical analysis by means of a specifically adapted 0-D model has thus been developed and is presented in this paper. The results obtained clearly indicate that the chemistry is different depending on the wavelength. They also suggest that at 248 nm, methane dissociation is in competition with ionisation, which could occur through a three-photon absorption process. As a consequence, 248 nm photolysis appears to be unsuitable to study methane neutral photochemistry alone. The implications of this result on our laboratory simulation program and new experimental developments are discussed. Additional information on methane photochemistry at 121.6 nm are also obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号