首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   1篇
地质学   2篇
自然地理   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 250 毫秒
1
1.
This paper applies a new formulation to do moment tensor inversion for earthquakes in the Kushiro area of Japan. Comparing with conventional moment tensor inversion method, the new one takes the effect of source time function into consideration. For the inversion, best solution is obtained by minimizing the difference between the observed seismograms and the synthetic ones. And the best-fitting focal depth is determined from the variance reduction. The results indicate that half duration of source time function is proportional to the magnitude of earthquakes. Large earthquakes have long half duration, whereas that of moderate-small earthquakes is comparatively shorter. The focal mechanisms of all three earthquakes are of thrust fault type, which is mainly ascribed to the collision of the North American plate with the Eurasia plate in the late Cretaceous or Paleogene.  相似文献   
2.
An air‐gun survey, conducted over a total distance of 4356 km in the western end of the Kurile Arc offshore, has revealed the architecture and evolution of the Kushiro submarine canyon and Tokachi submarine channels of the Tokachi‐oki forearc basin. The Kushiro submarine canyon, which runs along the eastern margin of the forearc basin, is characterized by an entrenchment of up to several hundred metres in depth. The Tokachi submarine channels, by contrast, occupy the centre of the basin and consist of small, branching and levéed channels. The Kushiro submarine canyon is not connected to the Tokachi River, which has the largest drainage area in eastern Hokkaido, with a catchment area of approximately 9010 km2 that includes high mountains and a volcanic region. Instead, the Kushiro submarine canyon exhibits an offset connection/quasi‐connection (probably having been connected during a prior sea‐level lowstand) with the Kushiro River (drainage area of 2500 km2) which contains the Kushiro Swamp at its mouth. To understand this unusual arrangement of rivers and submarine channels, acoustic facies analysis was undertaken to establish the seismic stratigraphy of the area. Subsurface strata can be divided into six seismic units of Miocene to Recent age. Analyses of seismic facies and isopach maps indicate that: (i) the palaeo‐Kushiro submarine canyon, which was ancestral to the Kushiro submarine canyon, was an aggradational levéed channel; and (ii) the palaeo‐Tokachi submarine channel was much larger than the present‐day channel and changed its course several times. Both the palaeo‐Kushiro submarine canyon and palaeo‐Tokachi submarine channel were fed predominantly by the ancestral Tokachi River, whereas the present‐day channels are no longer connected or quasi‐connected to the Tokachi River. Entrenchment of the Kushiro submarine canyon began in its distal reaches during the Early Pleistocene and propagated landward over time, which was possibly caused by base‐level fall (i.e. subsidence of the trench floor) or uplift of the forearc basin. Entrenchment of the upper part of the Kushiro submarine canyon began during the Middle Pleistocene, which may have been related to: (i) depositional progradation; (ii) uplift of the coastal area; or (iii) a change in source area from the ancestral Tokachi River to the Kushiro River.  相似文献   
3.
An underground investigation has been performed in a subbituminous coal seam exhibiting a particular cleat pattern in the Kushiro coalfield, Japan. The coal cleat pattern shows some analogy to isolated straight joints, and is believed to have been formed during the late Tertiary period by a compressive tectonic stress, roughly in the east–west direction. Three cylindrical coal specimens representing the three orthogonal axes of the coal seam with respect to the bedding plane and its associated cleat were cored from a large block of coal. Gas permeabilities of the three coal specimens were measured under the same hydrostatic pressure conditions. Results clearly revealed anisotropy in permeability of the coal seam under relatively low confining pressures of less than about 12 MPa. The specimen cored parallel to both the bedding plane and cleat strike showed the highest permeability, even though the cleats were partly filled with calcite and clay minerals. The permeability in this direction was 2.5 times higher than perpendicular to the bedding plane, and 3 times higher than in the direction parallel to the bedding plane but perpendicular to the cleat strike. This suggests that the cleats play a greater role than bedding planes in controlling fluid flow in the coal seam. The permeability in the three orientations, however, converged to the same value at confining pressures above about 16 MPa. This may suggest that both cleats and bedding planes in a coal seam can close due to earth pressure if the coal seam is located below a certain depth. It further indicates that the traditional view that gas permeability is always greater parallel to the coal bedding than perpendicular to it should be reconsidered.  相似文献   
4.
Environmental degradation, including shallowing, deterioration of aquatic habitat and water pollution, has arisen from the inflow of fine sediment to Lake Takkobu in northern Japan. The lake has experienced gradual environmental degradation due to agricultural development, which has introduced both fine sediment and sediment-associated nutrients into the lake. We have reconstructed the history of sediment yield to Lake Takkobu in Kushiro Mire over the last 300 years and have examined trends with reference to land-use development. Fifteen lake sediment core samples were obtained, and various physical variables of lake sediments were analyzed and dated using 137Cs and tephrochronology. The physical variables showed that all points contained mainly silt, except for two points close to the river mouths, where the mean diameter was < 35 μm. The peaks were defined as a “signal” when the physical variables were synchronous in a profile. These were created by floods and engineering works constructing drainage systems. The signal of canal construction in 1898 was detected in all core points. Lake Takkobu core samples contained two tephra layers. From the refractive indices of dehydrated glasses, the lower tephra layer was identified as Ko-c2 (1694) and the upper tephra layer as Ta-a (1739). A clear peak in the 137Cs concentration was detected at all the sampling points, except for the site close to the Takkobu River. This site showed two peaks in the 137Cs concentration, which was attributed to perturbation from flood events and a drainage project. The maximum 137Cs concentration was identified as the sediment surface from 1963, enveloped by the 1962 and 1964 signals. The sediment yield averaged over the last 300 years for Lake Takkobu was reconstructed for four periods using the signal, tephra and 137Cs as marker layers. The sediment yield under the natural erosion condition for the first two periods was 226 tons/year from 1694 to 1739 and 196 tons/year from 1739 to 1898. The development of the Takkobu watershed started in 1880s with partial deforestation and channelization in 1898, 1959, and 1962 leading to an increased sedimentation yield of 1016 tons/year from 1898 to 1963. Continued deforestation, channelization works in 1964, road construction in 1980–1990s, as well as agriculture development caused a further increase to 1354 tons/year from 1963 to 2004. Compared to the averaged natural sedimentation yield of 206 tons/year until 1898, initial land-use development in a catchment accelerated lake sedimentation, indicated by the 5-fold sediment yield. With increasing agricultural development since 1960s, sedimentation yields were highest for 1963–2004; a 7-fold increase compared with pre-impact conditions. To reduce sediment yield, riparian buffers along the rivers should be preserved or rebuilt, and sluices may function effectively during short-term periods of flooding. Environmental management policy and laws restricting uncontrolled and inappropriate land-use might help in addition to ensure longer-term environmental health by reducing the sedimentation rate.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号